Skip to main content
Erschienen in: Neural Processing Letters 3/2019

02.07.2019

T–S Fuzzy Model Identification with Sparse Bayesian Techniques

verfasst von: Limin Zhang, Junpeng Li, Hongjiu Yang

Erschienen in: Neural Processing Letters | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper introduces a novel method for fuzzy modeling based on sparse Bayesian techniques. The sparse representation problems in the Takagi–Sugeno (T–S) fuzzy system identification are studied, which is to establish a T–S fuzzy system with a adaptive number of fuzzy rules and simultaneously have a minimal number of nonzero consequent parameters. The proposed method is called sparse Bayesian fuzzy inference systems (B-sparseFIS). There are two main procedures in the paper. Firstly, initial fuzzy rule of antecedent part is extracted automatically by an AP clustering method. By using the algorithm of adaptive block orthogonal matching pursuit, the number of rules is computed statistically then the main important fuzzy rules can be selected. In the algorithm, the redundant rules are eliminated for better model accuracy and generalization performance; secondly, an adaptive B-sparseFIS is exploited. The consequence of fuzzy system is identified and simplified with sparse Bayesian techniques such that many consequent parameters will approximate to zero. Four examples are provided to illustrate the effectiveness of the proposed algorithm. Furthermore, the performances of the algorithm are validated through the results of statistical analyses including parameter estimate error, MSE, NRMSE, etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Ge C, Wang H, Liu Y et al (2018) Stabilization of chaotic systems under variable sampling and state quantized controller. Fuzzy Sets Syst 344:129–144MathSciNetMATHCrossRef Ge C, Wang H, Liu Y et al (2018) Stabilization of chaotic systems under variable sampling and state quantized controller. Fuzzy Sets Syst 344:129–144MathSciNetMATHCrossRef
3.
Zurück zum Zitat Veloz A, Salas R, Allende-Cid H (2016) Identification of lags in nonlinear autoregressive time series using a flexible fuzzy model. Neural Process Lett 43(3):641–666CrossRef Veloz A, Salas R, Allende-Cid H (2016) Identification of lags in nonlinear autoregressive time series using a flexible fuzzy model. Neural Process Lett 43(3):641–666CrossRef
4.
Zurück zum Zitat Shen H, Li F, Yan H et al (2018) Finite-time event-triggered \(\cal{H} _\infty \) control for TS fuzzy Markov jump systems. IEEE Trans Fuzzy Syst 26(5):3122–3135CrossRef Shen H, Li F, Yan H et al (2018) Finite-time event-triggered \(\cal{H} _\infty \) control for TS fuzzy Markov jump systems. IEEE Trans Fuzzy Syst 26(5):3122–3135CrossRef
5.
Zurück zum Zitat Cheng J, Park JH, Karimi HR et al (2018) A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals. IEEE Trans Cybern 48(8):2232–2244CrossRef Cheng J, Park JH, Karimi HR et al (2018) A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals. IEEE Trans Cybern 48(8):2232–2244CrossRef
6.
Zurück zum Zitat Qi W, Zong G, Karim HR (2018) Observer-based adaptive SMC for nonlinear uncertain singular semi-Markov jump systems with applications to DC motor. IEEE Trans Circuits Syst I Regul Pap 65(9):2951–2960MathSciNetCrossRef Qi W, Zong G, Karim HR (2018) Observer-based adaptive SMC for nonlinear uncertain singular semi-Markov jump systems with applications to DC motor. IEEE Trans Circuits Syst I Regul Pap 65(9):2951–2960MathSciNetCrossRef
7.
Zurück zum Zitat Wang LX, Mendel JM (1992) Back-propagation fuzzy systems as nonlinear dynamic system identifiers. In: Proceedings of IEEE 5th international fuzzy systems, San Diego, pp 1409–1418 Wang LX, Mendel JM (1992) Back-propagation fuzzy systems as nonlinear dynamic system identifiers. In: Proceedings of IEEE 5th international fuzzy systems, San Diego, pp 1409–1418
8.
Zurück zum Zitat Kim E, Lee H, Park M, Park M (1998) A simply identified Sugeno-type fuzzy model via double clustering. Inf Sci 110(1–2):25–39CrossRef Kim E, Lee H, Park M, Park M (1998) A simply identified Sugeno-type fuzzy model via double clustering. Inf Sci 110(1–2):25–39CrossRef
9.
Zurück zum Zitat Kim E, Park M, Ji S et al (1997) A new approach to fuzzy modeling. IEEE Trans Fuzzy Syst 5(3):328–337CrossRef Kim E, Park M, Ji S et al (1997) A new approach to fuzzy modeling. IEEE Trans Fuzzy Syst 5(3):328–337CrossRef
10.
Zurück zum Zitat Setnes M (2000) Supervised fuzzy clustering for rule extraction. IEEE Trans Fuzzy Syst 8(4):416–424CrossRef Setnes M (2000) Supervised fuzzy clustering for rule extraction. IEEE Trans Fuzzy Syst 8(4):416–424CrossRef
11.
Zurück zum Zitat Wang LX, Mendel JM (1992) Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans Neural Netw 3(5):807–814CrossRef Wang LX, Mendel JM (1992) Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans Neural Netw 3(5):807–814CrossRef
12.
Zurück zum Zitat Gomez-Skarmeta AF, Delgado M, Vila MA (1999) About the use of fuzzy clustering techniques for fuzzy model identification. Fuzzy Sets Syst 106:179–188CrossRef Gomez-Skarmeta AF, Delgado M, Vila MA (1999) About the use of fuzzy clustering techniques for fuzzy model identification. Fuzzy Sets Syst 106:179–188CrossRef
13.
Zurück zum Zitat Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer/Plenum, BostonMATHCrossRef Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer/Plenum, BostonMATHCrossRef
14.
Zurück zum Zitat Tsekouras GE (2005) On the use of the weighted fuzzy c-means in fuzzy modeling. Adv Eng Softw 36(5):287–300MATHCrossRef Tsekouras GE (2005) On the use of the weighted fuzzy c-means in fuzzy modeling. Adv Eng Softw 36(5):287–300MATHCrossRef
15.
Zurück zum Zitat Lughofer E (2008) Extensions of vector quantization for incremental clustering. Pattern Recogn 41(3):995–1011MATHCrossRef Lughofer E (2008) Extensions of vector quantization for incremental clustering. Pattern Recogn 41(3):995–1011MATHCrossRef
16.
Zurück zum Zitat Wang LX, Mendel JM (1992) Generating fuzzy rules by learning from examples. IEEE Trans Syst Man Cybern 22(6):1414–1427MathSciNetCrossRef Wang LX, Mendel JM (1992) Generating fuzzy rules by learning from examples. IEEE Trans Syst Man Cybern 22(6):1414–1427MathSciNetCrossRef
17.
Zurück zum Zitat Kroll A (1996) Identification of functional fuzzy models using multidimensional reference fuzzy sets. Fuzzy Sets Syst 80(2):149–158MathSciNetCrossRef Kroll A (1996) Identification of functional fuzzy models using multidimensional reference fuzzy sets. Fuzzy Sets Syst 80(2):149–158MathSciNetCrossRef
18.
Zurück zum Zitat Chen JQ, Xi YG, Zhang ZJ (1998) A clustering algorithm for fuzzy model identification. Fuzzy Sets Syst 98(3):319–329MathSciNetCrossRef Chen JQ, Xi YG, Zhang ZJ (1998) A clustering algorithm for fuzzy model identification. Fuzzy Sets Syst 98(3):319–329MathSciNetCrossRef
19.
20.
Zurück zum Zitat Kukolj D (2002) Design of adaptive Takagi–Sugeno–Kang fuzzy models. Appl Soft Comput 2(2):89–103CrossRef Kukolj D (2002) Design of adaptive Takagi–Sugeno–Kang fuzzy models. Appl Soft Comput 2(2):89–103CrossRef
21.
Zurück zum Zitat Tsekouras G, Sarimveis H, Kavakli E (2005) A hierarchical fuzzy-clustering approach to fuzzy modeling. Fuzzy Sets Syst 150(2):245–266MathSciNetMATHCrossRef Tsekouras G, Sarimveis H, Kavakli E (2005) A hierarchical fuzzy-clustering approach to fuzzy modeling. Fuzzy Sets Syst 150(2):245–266MathSciNetMATHCrossRef
22.
Zurück zum Zitat Zou W, Li C, Zhang N (2017) A T-S fuzzy model identification approach based on a modified inter type-2 FRCM algorithm. IEEE Trans Fuzzy Syst 26(3):1104–1113 CrossRef Zou W, Li C, Zhang N (2017) A T-S fuzzy model identification approach based on a modified inter type-2 FRCM algorithm. IEEE Trans Fuzzy Syst 26(3):1104–1113 CrossRef
23.
Zurück zum Zitat Cordon O, Herrera F (1999) A two-stage evolutionary process for designing TSK fuzzy rule-based systems. IEEE Trans Syst Man Cybern Part B (Cybernetics) 29(6):703–715CrossRef Cordon O, Herrera F (1999) A two-stage evolutionary process for designing TSK fuzzy rule-based systems. IEEE Trans Syst Man Cybern Part B (Cybernetics) 29(6):703–715CrossRef
24.
Zurück zum Zitat Green P, Cross E, Worden K (2015) Bayesian system identification of dynamical systems using highly informative training data. Mech Syst Signal Process 56:109–122CrossRef Green P, Cross E, Worden K (2015) Bayesian system identification of dynamical systems using highly informative training data. Mech Syst Signal Process 56:109–122CrossRef
25.
Zurück zum Zitat Green PL (2015) Bayesian system identification of a nonlinear dynamical system using a novel variant of simulated annealing. Mech Syst Signal Process 52:133–146CrossRef Green PL (2015) Bayesian system identification of a nonlinear dynamical system using a novel variant of simulated annealing. Mech Syst Signal Process 52:133–146CrossRef
26.
Zurück zum Zitat Au SK, Zhang FL (2016) Fundamental two-stage formulation for Bayesian system identification. Part I General Theory Mech Syst Signal Process 66:31–42CrossRef Au SK, Zhang FL (2016) Fundamental two-stage formulation for Bayesian system identification. Part I General Theory Mech Syst Signal Process 66:31–42CrossRef
27.
Zurück zum Zitat Yv Beck JL, Li H (2017) Bayesian system identification based on hierarchical sparse Bayesian learning and Gibbs sampling with application to structural damage assessment. Comput Methods Appl Mech Eng 318:382–411MathSciNetCrossRef Yv Beck JL, Li H (2017) Bayesian system identification based on hierarchical sparse Bayesian learning and Gibbs sampling with application to structural damage assessment. Comput Methods Appl Mech Eng 318:382–411MathSciNetCrossRef
28.
Zurück zum Zitat Lozano AC, Swirszcz G, Abe N (2009) Grouped orthogonal matching pursuit for variable selection and prediction, Adv Neural Inf Process Syst 1150–1158 Lozano AC, Swirszcz G, Abe N (2009) Grouped orthogonal matching pursuit for variable selection and prediction, Adv Neural Inf Process Syst 1150–1158
29.
Zurück zum Zitat Bai T, Li Y, Tang Y (2011) Structured sparse representation appearance model for robust visual tracking. In: 2011 IEEE international conference on robotics and automation (ICRA). IEEE, pp 4399–4404 Bai T, Li Y, Tang Y (2011) Structured sparse representation appearance model for robust visual tracking. In: 2011 IEEE international conference on robotics and automation (ICRA). IEEE, pp 4399–4404
30.
Zurück zum Zitat Zhang T (2009) On the consistency of feature selection using greedy least squares regression. J Mach Learn Res 10:555–568MathSciNetMATH Zhang T (2009) On the consistency of feature selection using greedy least squares regression. J Mach Learn Res 10:555–568MathSciNetMATH
31.
Zurück zum Zitat Luo MN, Sun FC, Liu HP (2014) A novel T–S fuzzy systems identification with block structured sparse representation. J Franklin Inst 351(7):3508–3523MathSciNetMATHCrossRef Luo MN, Sun FC, Liu HP (2014) A novel T–S fuzzy systems identification with block structured sparse representation. J Franklin Inst 351(7):3508–3523MathSciNetMATHCrossRef
33.
Zurück zum Zitat Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244MathSciNetMATH Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244MathSciNetMATH
34.
Zurück zum Zitat Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197(4300):287–289MATHCrossRef Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197(4300):287–289MATHCrossRef
35.
Zurück zum Zitat Box GEP, Jenkins GM (1970) Time series analysis, forecasting and control, 2nd edn. Holden Day, San FranciscoMATH Box GEP, Jenkins GM (1970) Time series analysis, forecasting and control, 2nd edn. Holden Day, San FranciscoMATH
36.
Zurück zum Zitat Lin Y, Cunningham GA (1995) A new approach to fuzzy-neural system modeling. IEEE Trans Fuzzy Syst 3(2):190–198CrossRef Lin Y, Cunningham GA (1995) A new approach to fuzzy-neural system modeling. IEEE Trans Fuzzy Syst 3(2):190–198CrossRef
37.
Zurück zum Zitat Chiu S (1996) Selecting input variables for fuzzy models. J Intell Fuzzy Syst 4(4):243–256CrossRef Chiu S (1996) Selecting input variables for fuzzy models. J Intell Fuzzy Syst 4(4):243–256CrossRef
38.
Zurück zum Zitat Oh SK, Pedrycz W (2000) Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems. Fuzzy Sets Syst 115(2):205–230MathSciNetMATHCrossRef Oh SK, Pedrycz W (2000) Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems. Fuzzy Sets Syst 115(2):205–230MathSciNetMATHCrossRef
39.
Zurück zum Zitat Li CS, Zhou JZ, Fu B et al (2012) T–S fuzzy model identification with a gravitational search-based hyperplane clustering algorithm. IEEE Trans Fuzzy Syst 20(2):305–317CrossRef Li CS, Zhou JZ, Fu B et al (2012) T–S fuzzy model identification with a gravitational search-based hyperplane clustering algorithm. IEEE Trans Fuzzy Syst 20(2):305–317CrossRef
40.
Zurück zum Zitat Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection//Ijcai. 14(2):1137–1145 Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection//Ijcai. 14(2):1137–1145
41.
Zurück zum Zitat Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74(366a):427–431MathSciNetMATHCrossRef Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74(366a):427–431MathSciNetMATHCrossRef
Metadaten
Titel
T–S Fuzzy Model Identification with Sparse Bayesian Techniques
verfasst von
Limin Zhang
Junpeng Li
Hongjiu Yang
Publikationsdatum
02.07.2019
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2019
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-019-10071-3

Weitere Artikel der Ausgabe 3/2019

Neural Processing Letters 3/2019 Zur Ausgabe