Skip to main content
Erschienen in: Optical and Quantum Electronics 3/2018

01.03.2018

Modified Kudryashov method and its application to the fractional version of the variety of Boussinesq-like equations in shallow water

verfasst von: D. Kumar, M. T. Darvishi, A. K. Joardar

Erschienen in: Optical and Quantum Electronics | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present study emphasis to look for new closed form exact solitary wave solutions for the variety of fractional Boussinesq-like equations using the modified Kudryashov method with the help of symbolic computation. As a consequence, the modified Kudryashov method is successfully employed and acquired some new exact solitary wave solutions in terms of exponential based functions with fractional version. All solutions have been verified back into its corresponding equation with the aid of Maple package program. We depicted the physical explanation of the extracted solutions with the free choice of the different parameters by plotting some 3D and 2D illustrations. Finally, we believe that the executed method is robust and efficient than other methods and the obtained solutions in this paper can help us to understand the variation of solitary waves in the field of oceanography.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bekir, A., Kaplan, M.: Exponential rational function method for solving nonlinear equations arising in various physical models. Chin. J. Phys. 54(3), 365–370 (2016)MathSciNetCrossRef Bekir, A., Kaplan, M.: Exponential rational function method for solving nonlinear equations arising in various physical models. Chin. J. Phys. 54(3), 365–370 (2016)MathSciNetCrossRef
Zurück zum Zitat Cenesiz, Y., Kurt, A.: New fractional complex transform for conformable fractional partial differential equations. J. Appl. Math. Stat. Inform. 12(2), 41–47 (2016)MathSciNetCrossRef Cenesiz, Y., Kurt, A.: New fractional complex transform for conformable fractional partial differential equations. J. Appl. Math. Stat. Inform. 12(2), 41–47 (2016)MathSciNetCrossRef
Zurück zum Zitat Cenesiz, Y., Tasbozan, O., Kurt, A.: Functional variable method for conformable fractional modified KdV–ZK equation and Maccari system. Tbilisi Math. J. 10(1), 117–125 (2017)MathSciNetCrossRefMATH Cenesiz, Y., Tasbozan, O., Kurt, A.: Functional variable method for conformable fractional modified KdV–ZK equation and Maccari system. Tbilisi Math. J. 10(1), 117–125 (2017)MathSciNetCrossRefMATH
Zurück zum Zitat Darvishi, M.T., Najafi, M., Wazwaz, A.-M.: Traveling wave solutions for Boussinesq-like equations with spatial and spatial–temporal dispersion. Romanian Rep. Phys. (2017a, in press) Darvishi, M.T., Najafi, M., Wazwaz, A.-M.: Traveling wave solutions for Boussinesq-like equations with spatial and spatial–temporal dispersion. Romanian Rep. Phys. (2017a, in press)
Zurück zum Zitat Darvishi, M.T., Najafi, M., Wazwaz, A.-M.: Soliton solutions for Boussinesq-like equations with spatio-temporal dispersion. Ocean Eng. 130, 228–240 (2017b)CrossRef Darvishi, M.T., Najafi, M., Wazwaz, A.-M.: Soliton solutions for Boussinesq-like equations with spatio-temporal dispersion. Ocean Eng. 130, 228–240 (2017b)CrossRef
Zurück zum Zitat Darvishi, M.T., Ahmadian, S., Baloch Arbabi, S., Najafi, M.: Optical solitons for a family of nonlinear (1+1)-dimensional time–space fractional Schrödinger models. Opt. Quantum Electron. 50(1), Article:32 (2018) Darvishi, M.T., Ahmadian, S., Baloch Arbabi, S., Najafi, M.: Optical solitons for a family of nonlinear (1+1)-dimensional time–space fractional Schrödinger models. Opt. Quantum Electron. 50(1), Article:32 (2018)
Zurück zum Zitat Eslami, M., Mirzazadeh, M.: First integral method to lookfor exact solutions of a variety of Boussinesq-like equations. Ocean Eng. 83, 133–137 (2014)CrossRef Eslami, M., Mirzazadeh, M.: First integral method to lookfor exact solutions of a variety of Boussinesq-like equations. Ocean Eng. 83, 133–137 (2014)CrossRef
Zurück zum Zitat Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)MathSciNetCrossRefMATH Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)MathSciNetCrossRefMATH
Zurück zum Zitat Eslami, M., Khodadad, F.S., Nazari, F., Rezazadeh, H.: The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative. Opt. Quantum Electron. 49(12), Article:391 (2017a) Eslami, M., Khodadad, F.S., Nazari, F., Rezazadeh, H.: The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative. Opt. Quantum Electron. 49(12), Article:391 (2017a)
Zurück zum Zitat Eslami, M., Rezazadeh, H., Rezazadeh, M., Mosavi, S.S.: Exact solutions to the space–time fractional Schrödinger–Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation. Opt. Quantum Electron. 49(8), Article:279 (2017b) Eslami, M., Rezazadeh, H., Rezazadeh, M., Mosavi, S.S.: Exact solutions to the space–time fractional Schrödinger–Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation. Opt. Quantum Electron. 49(8), Article:279 (2017b)
Zurück zum Zitat Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformations in Soliton Theory and Its Geometric Applications. Shanghai Science Technology, Shanghai (1999) Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformations in Soliton Theory and Its Geometric Applications. Shanghai Science Technology, Shanghai (1999)
Zurück zum Zitat Guner, O., Bekir, A., Korkmaz, A.: Tanh-type and sech-type solitons for some space–time fractional PDE models. Eur. Phys. J. Plus 132(2), Article:92 (2017) Guner, O., Bekir, A., Korkmaz, A.: Tanh-type and sech-type solitons for some space–time fractional PDE models. Eur. Phys. J. Plus 132(2), Article:92 (2017)
Zurück zum Zitat Hawlader, F., Kumar, D.: A variety of exact analytical solutions of extended shallow water wave equations via improved \((\frac{G^{\prime }}{G})\)-expansion method. Int. J. Phys. Res. 5(1), 21–27 (2017)CrossRef Hawlader, F., Kumar, D.: A variety of exact analytical solutions of extended shallow water wave equations via improved \((\frac{G^{\prime }}{G})\)-expansion method. Int. J. Phys. Res. 5(1), 21–27 (2017)CrossRef
Zurück zum Zitat Hosseini, K., Bekir, A., Ansari, R.: Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the \(\exp (-\phi {}(\xi {}))\)-expansion method. Opt. Quantum Electron. 49(4), Article:131 (2017a) Hosseini, K., Bekir, A., Ansari, R.: Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the \(\exp (-\phi {}(\xi {}))\)-expansion method. Opt. Quantum Electron. 49(4), Article:131 (2017a)
Zurück zum Zitat Hosseini, K., Mayeli, P., Ansari, R.: Modified Kudryashov method for solving the conformable time-fractional Klein–Gordon equations with quadratic and cubic nonlinearities. Optik 130, 737–742 (2017b)ADSCrossRef Hosseini, K., Mayeli, P., Ansari, R.: Modified Kudryashov method for solving the conformable time-fractional Klein–Gordon equations with quadratic and cubic nonlinearities. Optik 130, 737–742 (2017b)ADSCrossRef
Zurück zum Zitat Iyiola, O.S., Tasbozan, O., Kurt, A., Cenesiz, Y.: On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion. Chaos Solitons Fractals 94, 1–7 (2017)ADSMathSciNetCrossRefMATH Iyiola, O.S., Tasbozan, O., Kurt, A., Cenesiz, Y.: On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion. Chaos Solitons Fractals 94, 1–7 (2017)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Kaplan, M.: Applications of two reliable methods for solving a nonlinear conformable time-fractional equation. Opt. Quantum Electron. 49(9), Article:312 (2017) Kaplan, M.: Applications of two reliable methods for solving a nonlinear conformable time-fractional equation. Opt. Quantum Electron. 49(9), Article:312 (2017)
Zurück zum Zitat Khalil, R., Al-Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetCrossRefMATH Khalil, R., Al-Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetCrossRefMATH
Zurück zum Zitat Kumar, R., Kaushal, R.S., Prasad, A.: Some new solitary and travelling wave solutions of certain nonlinear diffusion–reaction equations using auxiliary equation method. Phys. Lett. A 372(19), 3395–3399 (2008)ADSMathSciNetCrossRefMATH Kumar, R., Kaushal, R.S., Prasad, A.: Some new solitary and travelling wave solutions of certain nonlinear diffusion–reaction equations using auxiliary equation method. Phys. Lett. A 372(19), 3395–3399 (2008)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Kumar, D., Hosseini, K., Samadani, F.: The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Optik 149, 439–446 (2017a)ADSCrossRef Kumar, D., Hosseini, K., Samadani, F.: The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Optik 149, 439–446 (2017a)ADSCrossRef
Zurück zum Zitat Kumar, D., Seadawy, A.R., Joardar, A.K.: Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. 56, 75–85 (2017b)CrossRef Kumar, D., Seadawy, A.R., Joardar, A.K.: Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. 56, 75–85 (2017b)CrossRef
Zurück zum Zitat Kurt, A., Cenesiz, Y., Tasbozan, O.: On the solution of Burgers’ equation with the new fractional derivative. Open Phys. 13(1), 355–360 (2015)CrossRef Kurt, A., Cenesiz, Y., Tasbozan, O.: On the solution of Burgers’ equation with the new fractional derivative. Open Phys. 13(1), 355–360 (2015)CrossRef
Zurück zum Zitat Kurt, A., Tasbozan, O., Baleanu, D.: New solutions for conformable fractional Nizhnik–Novikov–Vesselov system via \((\frac{G^{\prime }}{G})\)-expansion method and homotopy analysis method. Opt. Quantum Electron. 49(10), Article:333 (2017) Kurt, A., Tasbozan, O., Baleanu, D.: New solutions for conformable fractional Nizhnik–Novikov–Vesselov system via \((\frac{G^{\prime }}{G})\)-expansion method and homotopy analysis method. Opt. Quantum Electron. 49(10), Article:333 (2017)
Zurück zum Zitat Lakestani, M., Manafian, J.: Application of the ITEM for the modified dispersive water-wave system. Opt. Quantum Electron. 49(4), Article:128 (2017) Lakestani, M., Manafian, J.: Application of the ITEM for the modified dispersive water-wave system. Opt. Quantum Electron. 49(4), Article:128 (2017)
Zurück zum Zitat Lee, J., Rathinasamy, S.: Exact travelling wave solutions of a variety of Boussinesq-like equations. Chin. J. Phys. 52(3), 939–957 (2014)MathSciNet Lee, J., Rathinasamy, S.: Exact travelling wave solutions of a variety of Boussinesq-like equations. Chin. J. Phys. 52(3), 939–957 (2014)MathSciNet
Zurück zum Zitat Liu, W.-J.: New solitary wave solution for the Boussinesq wave equation using the semi-inverse method and the exp-function method. Z. Naturforschung A 64(11), 709–712 (2009)ADS Liu, W.-J.: New solitary wave solution for the Boussinesq wave equation using the semi-inverse method and the exp-function method. Z. Naturforschung A 64(11), 709–712 (2009)ADS
Zurück zum Zitat Lu, D., Seadawy, A., Arshad, M.: Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 140, 136–144 (2017)ADSCrossRef Lu, D., Seadawy, A., Arshad, M.: Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 140, 136–144 (2017)ADSCrossRef
Zurück zum Zitat Ma, W.-X., Huang, T.-W., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Physica Scripta 82(6), 065003 (2010)ADSCrossRefMATH Ma, W.-X., Huang, T.-W., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Physica Scripta 82(6), 065003 (2010)ADSCrossRefMATH
Zurück zum Zitat Miah, M.M., Ali, H.S., Akbar, M.A., Wazwaz, A.-M.: Some applications of the \((\frac{G^{\prime }}{G},\frac{1}{G})\)-expansion method to find new exact solutions of NLEEs. Eur. Phys. J. Plus 132(6), Article:252 (2017) Miah, M.M., Ali, H.S., Akbar, M.A., Wazwaz, A.-M.: Some applications of the \((\frac{G^{\prime }}{G},\frac{1}{G})\)-expansion method to find new exact solutions of NLEEs. Eur. Phys. J. Plus 132(6), Article:252 (2017)
Zurück zum Zitat Rahmat, R., Mohyud-Din, S.T., Khan, U.: Exact traveling wave solutions of fractional order Boussinesq-like equations by applying exp-function method. Results Phys. 8, 120–144 (2017) Rahmat, R., Mohyud-Din, S.T., Khan, U.: Exact traveling wave solutions of fractional order Boussinesq-like equations by applying exp-function method. Results Phys. 8, 120–144 (2017)
Zurück zum Zitat Roshid, H.-O.: Novel solitary wave solution in shallow water and ion acoustic plasma waves in terms of two nonlinear models via MSE method. J. Ocean Eng. Sci. 2(3), 196–202 (2017)CrossRef Roshid, H.-O.: Novel solitary wave solution in shallow water and ion acoustic plasma waves in terms of two nonlinear models via MSE method. J. Ocean Eng. Sci. 2(3), 196–202 (2017)CrossRef
Zurück zum Zitat Tasbozan, O., Cenesiz, Y., Kurt, A.: New solutions for conformable fractional Boussinesq and combined KdV–mKdV equations using Jacobi elliptic function expansion method. Eur. Phys. J. Plus 131(7), Article:244 (2016) Tasbozan, O., Cenesiz, Y., Kurt, A.: New solutions for conformable fractional Boussinesq and combined KdV–mKdV equations using Jacobi elliptic function expansion method. Eur. Phys. J. Plus 131(7), Article:244 (2016)
Zurück zum Zitat Tasbozan, O., Cenesiz, Y., Kurt, A., Baleanu, D.: New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method. Open Phys. 15(1), 647–651 (2017)CrossRef Tasbozan, O., Cenesiz, Y., Kurt, A., Baleanu, D.: New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method. Open Phys. 15(1), 647–651 (2017)CrossRef
Zurück zum Zitat Vakhnenko, V.O., Parkes, E.J., Morrison, A.J.: A Backlund transformation and the inverse scattering transform method for the generalized Vakhnenkor equation. Chaos Solitons Fractals 17(4), 683–692 (2003)ADSMathSciNetCrossRefMATH Vakhnenko, V.O., Parkes, E.J., Morrison, A.J.: A Backlund transformation and the inverse scattering transform method for the generalized Vakhnenkor equation. Chaos Solitons Fractals 17(4), 683–692 (2003)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Wang, M., Li, X., Zhang, J.: The \((\frac{G^{\prime }}{G})\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)ADSMathSciNetCrossRef Wang, M., Li, X., Zhang, J.: The \((\frac{G^{\prime }}{G})\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)ADSMathSciNetCrossRef
Zurück zum Zitat Wazwaz, A.-M.: Multiple-soliton solutions for the Boussinesq equation. Appl. Math. Comput. 192, 479–486 (2007)MathSciNetMATH Wazwaz, A.-M.: Multiple-soliton solutions for the Boussinesq equation. Appl. Math. Comput. 192, 479–486 (2007)MathSciNetMATH
Zurück zum Zitat Wazwaz, A.-M.: Solitons and singular solitons for a variety of Boussinesq-like equations. Ocean Eng. 53, 1–5 (2012)CrossRef Wazwaz, A.-M.: Solitons and singular solitons for a variety of Boussinesq-like equations. Ocean Eng. 53, 1–5 (2012)CrossRef
Zurück zum Zitat Xie, F., Zhenya, Y., Zhang, H.-Q.: Explicit and exact traveling wave solutions of Whitham–Broer–Kaup shallow water equations. Phys. Lett. A 285(1), 76–80 (2001)ADSMathSciNetCrossRefMATH Xie, F., Zhenya, Y., Zhang, H.-Q.: Explicit and exact traveling wave solutions of Whitham–Broer–Kaup shallow water equations. Phys. Lett. A 285(1), 76–80 (2001)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Zhou, H.W., Yang, S., Zhang, S.Q.: Conformable derivative approach to anomalous diffusion. Physica A Stat. Mech. Appl. 491, 1001–1013 (2018)ADSMathSciNetCrossRef Zhou, H.W., Yang, S., Zhang, S.Q.: Conformable derivative approach to anomalous diffusion. Physica A Stat. Mech. Appl. 491, 1001–1013 (2018)ADSMathSciNetCrossRef
Metadaten
Titel
Modified Kudryashov method and its application to the fractional version of the variety of Boussinesq-like equations in shallow water
verfasst von
D. Kumar
M. T. Darvishi
A. K. Joardar
Publikationsdatum
01.03.2018
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 3/2018
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-018-1399-y

Weitere Artikel der Ausgabe 3/2018

Optical and Quantum Electronics 3/2018 Zur Ausgabe