Skip to main content
Erschienen in: Photonic Network Communications 2/2017

11.02.2017 | Original Paper

All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods

verfasst von: Reza Talebzadeh, Mohammad Soroosh, Yousef S. Kavian, Farhad Mehdizadeh

Erschienen in: Photonic Network Communications | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we employed multilayer ring resonators in a silicon rod base structure to realize 6-channel and 8-channel demultiplexers based on two-dimensional photonic crystals. Both the main rings and basic structures are composed of silicon rods, and the interior rings of the multilayer rings are composed of carbon. Employing silicon and carbon rods of different radii in multilayer ring resonators enhanced the coupling efficiency between the rings and waveguides. The average quality factor and power transmission efficiency were 4320 and 93%, respectively. Crosstalk values from \(-11\) to −46 dB in conjunction with the mentioned characteristics suggest the use of the device for optical communication applications. The compact size of the proposed structure and the materials used make the proposed demultiplexer suitable for optical integrated circuits.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, X., Liao, Q., Yu, T., Liu, N., Huang, Y.: Novel ultra compact wavelength division demultiplexer based on photonic band gap. Optics Commun. 285, 274–276 (2012)CrossRef Zhang, X., Liao, Q., Yu, T., Liu, N., Huang, Y.: Novel ultra compact wavelength division demultiplexer based on photonic band gap. Optics Commun. 285, 274–276 (2012)CrossRef
2.
Zurück zum Zitat Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact low crosstalk CWDM demultiplexer using photonic crystal super prism. Opt. Exp. 42, 17214–17260 (2008) Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact low crosstalk CWDM demultiplexer using photonic crystal super prism. Opt. Exp. 42, 17214–17260 (2008)
3.
Zurück zum Zitat Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)MATH Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)MATH
4.
Zurück zum Zitat Soukoulis, C.M.: Photonic Band Gap Materials. Kliwer Academic Publisher, New York (1996)CrossRefMATH Soukoulis, C.M.: Photonic Band Gap Materials. Kliwer Academic Publisher, New York (1996)CrossRefMATH
5.
Zurück zum Zitat D’Orazio, A., De Sario, M., Petruzzelli, V., Prudenzano, F.: Photonic band gap filter for wavelength division multiplexer. Opt. Exp. 11, 230–232 (2003)CrossRef D’Orazio, A., De Sario, M., Petruzzelli, V., Prudenzano, F.: Photonic band gap filter for wavelength division multiplexer. Opt. Exp. 11, 230–232 (2003)CrossRef
6.
Zurück zum Zitat Yablonovitch, E.: Inhibited spontaneous meission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)CrossRef Yablonovitch, E.: Inhibited spontaneous meission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)CrossRef
7.
Zurück zum Zitat D’Aguanno, G., Mattiucci, N., Bloemer, M.J., De Ceglia, D., Vincenti, M.A., Alu’, A.: Transmission resonances in plasmonic metallic gratings. J. Opt. Soc. Am. B 28, 253–264 (2011)CrossRef D’Aguanno, G., Mattiucci, N., Bloemer, M.J., De Ceglia, D., Vincenti, M.A., Alu’, A.: Transmission resonances in plasmonic metallic gratings. J. Opt. Soc. Am. B 28, 253–264 (2011)CrossRef
8.
Zurück zum Zitat Tang, B., Dai, L., Jiang, C.: Transmission enhancement of slow light by a subwavelength plasmon-dielectric system. J. Opt. Soc. Am. B 27, 2433–2437 (2010)CrossRef Tang, B., Dai, L., Jiang, C.: Transmission enhancement of slow light by a subwavelength plasmon-dielectric system. J. Opt. Soc. Am. B 27, 2433–2437 (2010)CrossRef
9.
Zurück zum Zitat Wang, B., Wang, G.P.: Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. App. Phys. Lett. 87, 013107 (2005)CrossRef Wang, B., Wang, G.P.: Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. App. Phys. Lett. 87, 013107 (2005)CrossRef
10.
Zurück zum Zitat Hanand, Z., Forsberg, E.: Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technol. Lett. 19, 91–93 (2007)CrossRef Hanand, Z., Forsberg, E.: Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technol. Lett. 19, 91–93 (2007)CrossRef
11.
Zurück zum Zitat Liu, Y., Kim, J.: Plasmonic modulation and switching via combined utilization of Young interference and metal-insulator- metal waveguide coupling. J. Opt. Soc. Am. B 28, 2712–2717 (2011)CrossRef Liu, Y., Kim, J.: Plasmonic modulation and switching via combined utilization of Young interference and metal-insulator- metal waveguide coupling. J. Opt. Soc. Am. B 28, 2712–2717 (2011)CrossRef
12.
Zurück zum Zitat Tai, C., Chang, S.H., Chiu, T.C.: Numerical optimization of wide angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton waves. J. Opt. Soc. Am. B 25, 1387–1392 (2008)CrossRef Tai, C., Chang, S.H., Chiu, T.C.: Numerical optimization of wide angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton waves. J. Opt. Soc. Am. B 25, 1387–1392 (2008)CrossRef
13.
Zurück zum Zitat Kim, H., Park, I., Park, B.O.S., Lee, E., Lee, S.: Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing. Opt. Exp. 12, 5625–5648 (2004)CrossRef Kim, H., Park, I., Park, B.O.S., Lee, E., Lee, S.: Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing. Opt. Exp. 12, 5625–5648 (2004)CrossRef
14.
Zurück zum Zitat Liu, V., Jiao, Y., Miller, D.A.B., Fan, S.: Design methodology for compact photonic-crystal-based wavelength division multiplexers. Opt. Lett. 36, 591–594 (2011)CrossRef Liu, V., Jiao, Y., Miller, D.A.B., Fan, S.: Design methodology for compact photonic-crystal-based wavelength division multiplexers. Opt. Lett. 36, 591–594 (2011)CrossRef
15.
Zurück zum Zitat Chien, F.S., Hsu, Y., Hsieh, W., Cheng, S.: Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides. Opt. Exp. 12, 1119–1124 (2004)CrossRef Chien, F.S., Hsu, Y., Hsieh, W., Cheng, S.: Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides. Opt. Exp. 12, 1119–1124 (2004)CrossRef
16.
Zurück zum Zitat Boumami, S., Naoum, R.: New version of seven wavelengths demultiplexer based on the microcavities in a two-dimensional photonic crystal. Optik 124, 2373 (2013)CrossRef Boumami, S., Naoum, R.: New version of seven wavelengths demultiplexer based on the microcavities in a two-dimensional photonic crystal. Optik 124, 2373 (2013)CrossRef
17.
Zurück zum Zitat Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E 50, 97 (2013)CrossRef Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E 50, 97 (2013)CrossRef
18.
Zurück zum Zitat Reza Rakhshani, M., Ali Mansouri-Birjandi, M.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low-Dimens. Syst. Nanostruct. 50, 97–101 (2013)CrossRef Reza Rakhshani, M., Ali Mansouri-Birjandi, M.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low-Dimens. Syst. Nanostruct. 50, 97–101 (2013)CrossRef
19.
Zurück zum Zitat Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Optics Commun. 281, 4028–4032 (2008)CrossRef Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Optics Commun. 281, 4028–4032 (2008)CrossRef
20.
Zurück zum Zitat Rostami, A., Nazari, F., AlipourBanaei, H., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14 (2010)CrossRef Rostami, A., Nazari, F., AlipourBanaei, H., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14 (2010)CrossRef
21.
Zurück zum Zitat Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A novel proposal for all optical PhCs based demultiplexers suitable for DWDM applications. Opt. Quant. Electron. 45, 1063–1075 (2013)CrossRef Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A novel proposal for all optical PhCs based demultiplexers suitable for DWDM applications. Opt. Quant. Electron. 45, 1063–1075 (2013)CrossRef
22.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31(1), 65–70 (2016) Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31(1), 65–70 (2016)
24.
Zurück zum Zitat Venkatachalam, K., Siram Kumar, D., Robinson, S.: Investigation on 2D photonic crystal-based eight channel wavelength-division demultiplexer. Photon. Netw. Commun (2016) Venkatachalam, K., Siram Kumar, D., Robinson, S.: Investigation on 2D photonic crystal-based eight channel wavelength-division demultiplexer. Photon. Netw. Commun (2016)
25.
Zurück zum Zitat Yariv, A.: Quantum Electronics, 3rd edn. Wiley, New York (1989) Yariv, A.: Quantum Electronics, 3rd edn. Wiley, New York (1989)
26.
Zurück zum Zitat Bogaerts, W., Heyn, P.D., Vaerenbergh, T.V., DeVos, K.S., Selvaraja, K., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photonics Rev. 6, 47–73 (2012)CrossRef Bogaerts, W., Heyn, P.D., Vaerenbergh, T.V., DeVos, K.S., Selvaraja, K., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photonics Rev. 6, 47–73 (2012)CrossRef
27.
Zurück zum Zitat Johnson, S.G., Joannopolous, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173 (2001)CrossRef Johnson, S.G., Joannopolous, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173 (2001)CrossRef
28.
Zurück zum Zitat Green, M.A., Keevers, M.J.: Optical properties of intrinsic silicon at 300 K. Prog. Photovolt. 3, 189–192 (1995)CrossRef Green, M.A., Keevers, M.J.: Optical properties of intrinsic silicon at 300 K. Prog. Photovolt. 3, 189–192 (1995)CrossRef
29.
Zurück zum Zitat Phillip, H.R., Taft, E.A.: Kramers-Kronig analysis of reflectance data for diamond. Phys. Rev. 136, A1445–A1448 (1964)CrossRef Phillip, H.R., Taft, E.A.: Kramers-Kronig analysis of reflectance data for diamond. Phys. Rev. 136, A1445–A1448 (1964)CrossRef
30.
Zurück zum Zitat Talebi, R., Abbasian, K., Rostami, A.: Analytical modeling of quality factor for shell type microsphere resonators. Prog. Electromagn. Res. B 30, 293–311 (2011)CrossRef Talebi, R., Abbasian, K., Rostami, A.: Analytical modeling of quality factor for shell type microsphere resonators. Prog. Electromagn. Res. B 30, 293–311 (2011)CrossRef
31.
Zurück zum Zitat Qiu, M.: Effective index method for heterostructure-slab-wave-guide-based two-dimensional photonic crystals. App. Phy. Lett. 81, 1163–1165 (2002)CrossRef Qiu, M.: Effective index method for heterostructure-slab-wave-guide-based two-dimensional photonic crystals. App. Phy. Lett. 81, 1163–1165 (2002)CrossRef
32.
Zurück zum Zitat Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis. Opt. Exp. 8, 173–190 (2001)CrossRef Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis. Opt. Exp. 8, 173–190 (2001)CrossRef
33.
Zurück zum Zitat Zhang, X., Liao, Q., Yu, T., Liu, N., Huang, Y.: Novel ultra compact wavelength division demultiplexer based on photonic band gap. Optics Commun. 285, 274–276 (2012)CrossRef Zhang, X., Liao, Q., Yu, T., Liu, N., Huang, Y.: Novel ultra compact wavelength division demultiplexer based on photonic band gap. Optics Commun. 285, 274–276 (2012)CrossRef
34.
Zurück zum Zitat Chen, B., Liu, C., Liu, G.: A compact wavelength division de-multiplexer based on directional coupling of one-dimensional photonic crystal waveguides. Optics Commun. 285, 5100–5106 (2012)CrossRef Chen, B., Liu, C., Liu, G.: A compact wavelength division de-multiplexer based on directional coupling of one-dimensional photonic crystal waveguides. Optics Commun. 285, 5100–5106 (2012)CrossRef
35.
Zurück zum Zitat Qing-Hua, L., Hong-Ming, F., Shu-Wen, C., Tong-Biao, W., Tian-Bao Y., Yong-Zhen, H.: The design of large separating angle ultra-compact wavelength division demultiplexer based on photonic crystal ring resonators. Optics Commun. 331, 160–164 (2014) Qing-Hua, L., Hong-Ming, F., Shu-Wen, C., Tong-Biao, W., Tian-Bao Y., Yong-Zhen, H.: The design of large separating angle ultra-compact wavelength division demultiplexer based on photonic crystal ring resonators. Optics Commun. 331, 160–164 (2014)
36.
Zurück zum Zitat Pozar, D.M.: Microwave Engineering, 4th edn. Wiley, New York (2011) Pozar, D.M.: Microwave Engineering, 4th edn. Wiley, New York (2011)
37.
Zurück zum Zitat Collin, R.E.: Foundations For Microwave Engineering, 2nd edn. Wiley-IEEE Press, New York (2000) Collin, R.E.: Foundations For Microwave Engineering, 2nd edn. Wiley-IEEE Press, New York (2000)
Metadaten
Titel
All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods
verfasst von
Reza Talebzadeh
Mohammad Soroosh
Yousef S. Kavian
Farhad Mehdizadeh
Publikationsdatum
11.02.2017
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 2/2017
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-017-0688-x

Weitere Artikel der Ausgabe 2/2017

Photonic Network Communications 2/2017 Zur Ausgabe