Skip to main content
Erschienen in: Quantum Information Processing 6/2013

01.06.2013

Quantum private comparison against decoherence noise

verfasst von: Yan-Bing Li, Su-Juan Qin, Zheng Yuan, Wei Huang, Ying Sun

Erschienen in: Quantum Information Processing | Ausgabe 6/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a quantum private comparison scheme which can be used in decoherence noise scenario. With the combination of decoherence-free states and error-correcting code, it achieves a fault tolerant quantum private comparison to prevent collective decoherence noise and limited other decoherence noise. And the third party used in the protocol is not needed to be semi-honest.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In an ideal scenario, Calvin can obtain the comparison result with \(K_C\) if Alice and Bob use their private information \(M_A\) and \(M_B\) to replace \(K_A\) and \(K_B\), respectively. However, in the presented protocol, some bits in \(K^*_A\) and \(K^*_B\) (which \(K_A\) and \(K_B\) come form) are used randomly to detect cheats which happen in non-ideal scenario. So Alice and Bob do not know which bits in \(K^*_A\) and \(K^*_B\) will become \(K_A\) and \(K_B\) ultimately. Consequently, they cannot use their private information to replace \(K_A\) and \(K_B\).
 
Literatur
1.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, pp. 175–179. Bangalore, India, IEEE press, New York (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, pp. 175–179. Bangalore, India, IEEE press, New York (1984)
3.
Zurück zum Zitat Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard protocol against collective noise. Phys. Rev. A 80, 032321 (2009)ADSCrossRef Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard protocol against collective noise. Phys. Rev. A 80, 032321 (2009)ADSCrossRef
4.
Zurück zum Zitat Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)ADSCrossRef Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)ADSCrossRef
5.
Zurück zum Zitat Allati, A.E., Baz, M.E., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process. 10(5), 589–602 (2011)MathSciNetMATHCrossRef Allati, A.E., Baz, M.E., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process. 10(5), 589–602 (2011)MathSciNetMATHCrossRef
6.
Zurück zum Zitat Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRef Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRef
8.
Zurück zum Zitat Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)ADSCrossRef Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)ADSCrossRef
9.
Zurück zum Zitat Wang, T.Y., Wen, Q.Y., Gao, F., Lin, S., Zhu, F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A. 65–68, 373 (2008) Wang, T.Y., Wen, Q.Y., Gao, F., Lin, S., Zhu, F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A. 65–68, 373 (2008)
10.
Zurück zum Zitat Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitrary four-qubit GHZ-type state by using a four-qubit cluster state. Quantum Inf. Process. 10(5), 603–608 (2011)MathSciNetMATHCrossRef Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitrary four-qubit GHZ-type state by using a four-qubit cluster state. Quantum Inf. Process. 10(5), 603–608 (2011)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11(5–6), 0434–0443 (2011)MathSciNet Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11(5–6), 0434–0443 (2011)MathSciNet
12.
Zurück zum Zitat Jiang, M., Huang, X., Zhou, L.L., Zhou, Y.M., Zeng, J.: An efficient scheme for multi-party quantum state sharing via non-maximally entangled states. Chin. Sci. Bull. 57(10), 1089–1094 (2012)CrossRef Jiang, M., Huang, X., Zhou, L.L., Zhou, Y.M., Zeng, J.: An efficient scheme for multi-party quantum state sharing via non-maximally entangled states. Chin. Sci. Bull. 57(10), 1089–1094 (2012)CrossRef
13.
Zurück zum Zitat Massound, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China-Phys. Mech. Astron. 55(10), 1828–1831 (2012)ADSCrossRef Massound, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China-Phys. Mech. Astron. 55(10), 1828–1831 (2012)ADSCrossRef
14.
Zurück zum Zitat Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef
15.
Zurück zum Zitat Bostroem, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef Bostroem, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef
16.
Zurück zum Zitat Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef
17.
Zurück zum Zitat Long, G.L., Deng, F.G., Wang, C., Li, X.H., Wen, K., Wang, Wy: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)ADSCrossRef Long, G.L., Deng, F.G., Wang, C., Li, X.H., Wen, K., Wang, Wy: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)ADSCrossRef
18.
Zurück zum Zitat Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)ADSCrossRef Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)ADSCrossRef
19.
Zurück zum Zitat Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Revisiting the security of secure direct communication based on ping-pong protocol. Quantum Inf. Process. 10(3), 317–323 (2011)MathSciNetMATHCrossRef Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Revisiting the security of secure direct communication based on ping-pong protocol. Quantum Inf. Process. 10(3), 317–323 (2011)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Wang, T.Y., Wen, Q.Y.: Controlled quantum teleportation with Bell states. Chin. Phys. B 20(4), 040307 (2011)ADSCrossRef Wang, T.Y., Wen, Q.Y.: Controlled quantum teleportation with Bell states. Chin. Phys. B 20(4), 040307 (2011)ADSCrossRef
21.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetADSMATHCrossRef Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetADSMATHCrossRef
22.
Zurück zum Zitat Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575–579 (1997)ADSCrossRef Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575–579 (1997)ADSCrossRef
23.
Zurück zum Zitat Chen, X.B., Wen, Q.Y., Zhu, F.C.: Quantum circuits for probabilistic entanglement teleportation via a partially entangled pair. Int. J. Quantum Inf. 5, 717–728 (2007)MATHCrossRef Chen, X.B., Wen, Q.Y., Zhu, F.C.: Quantum circuits for probabilistic entanglement teleportation via a partially entangled pair. Int. J. Quantum Inf. 5, 717–728 (2007)MATHCrossRef
24.
Zurück zum Zitat Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)MathSciNetCrossRef Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)MathSciNetCrossRef
25.
Zurück zum Zitat Jiang, M., Li, H., Zhang, Z.K., Zeng, J.: Faithful teleportation via multi-particle quantum states in a network with many agents. Quantum Inf. Process. 11(1), 23–40 (2012)MathSciNetMATHCrossRef Jiang, M., Li, H., Zhang, Z.K., Zeng, J.: Faithful teleportation via multi-particle quantum states in a network with many agents. Quantum Inf. Process. 11(1), 23–40 (2012)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Yao, A.C.: Protocols for secure Computation. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society, Washington, DC (1982) Yao, A.C.: Protocols for secure Computation. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society, Washington, DC (1982)
27.
Zurück zum Zitat Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM, New York, NY (1987) Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM, New York, NY (1987)
28.
Zurück zum Zitat Mayers, D.: Unconditional secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)ADSCrossRef Mayers, D.: Unconditional secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)ADSCrossRef
29.
Zurück zum Zitat Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997)ADSCrossRef Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997)ADSCrossRef
30.
Zurück zum Zitat Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Lecture Notes in Computer Science, vol. 4622, pp. 572–590. Springer-Verlag, Berlin/Heidelberg (2007) Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Lecture Notes in Computer Science, vol. 4622, pp. 572–590. Springer-Verlag, Berlin/Heidelberg (2007)
31.
Zurück zum Zitat Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with decoherence-free states. Opt. Commun. 282(16), 3382–3385 (2009)ADSCrossRef Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with decoherence-free states. Opt. Commun. 282(16), 3382–3385 (2009)ADSCrossRef
32.
Zurück zum Zitat Wang, C., Hao, L., Zhao, L.J.: Implementation of quantum private queries using nuclear magnetic resonance. Chin. Phys. Lett. 28(8), 080302 (2011)ADSCrossRef Wang, C., Hao, L., Zhao, L.J.: Implementation of quantum private queries using nuclear magnetic resonance. Chin. Phys. Lett. 28(8), 080302 (2011)ADSCrossRef
33.
34.
Zurück zum Zitat Wang, T.Y., Wen, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)MathSciNetADSCrossRef Wang, T.Y., Wen, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)MathSciNetADSCrossRef
35.
Zurück zum Zitat Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)MathSciNetADSCrossRef Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)MathSciNetADSCrossRef
36.
Zurück zum Zitat Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Physica Scripta 80, 065002 (2009)ADSCrossRef Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Physica Scripta 80, 065002 (2009)ADSCrossRef
37.
Zurück zum Zitat Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)ADSCrossRef Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)ADSCrossRef
38.
Zurück zum Zitat Lin, J., Tseng, H.Y., Hwang, T.: InterceptCresend attacks on Chen et al’.s quantum private comparison protocol and the improvements. Opt. Commun. 284, 2412–2414 (2011)ADSCrossRef Lin, J., Tseng, H.Y., Hwang, T.: InterceptCresend attacks on Chen et al’.s quantum private comparison protocol and the improvements. Opt. Commun. 284, 2412–2414 (2011)ADSCrossRef
39.
Zurück zum Zitat Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)ADSCrossRef Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)ADSCrossRef
40.
Zurück zum Zitat Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)MathSciNetMATHCrossRef Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Jia, H.Y., Wen, Q.Y., Li, Y.B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51(4), 1187–1194 (2012)MathSciNetMATHCrossRef Jia, H.Y., Wen, Q.Y., Li, Y.B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51(4), 1187–1194 (2012)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Li, Y.B., Wen, Q.Y., Gao, F., Jia, H.Y., Sun, Y.: Information leak in Liu et al.’s quantum private comparison and a new protocol. Eur. Phys. J. D 66, 110 (2012)ADSCrossRef Li, Y.B., Wen, Q.Y., Gao, F., Jia, H.Y., Sun, Y.: Information leak in Liu et al.’s quantum private comparison and a new protocol. Eur. Phys. J. D 66, 110 (2012)ADSCrossRef
43.
Zurück zum Zitat Liu, W., Wang, Y.B., Tao, J.Z., Cao, Y.Z.: A protocol for the quantum private comparison of equality with-type state. Int. J. Theor. Phys. 51, 69–77 (2012)MATHCrossRef Liu, W., Wang, Y.B., Tao, J.Z., Cao, Y.Z.: A protocol for the quantum private comparison of equality with-type state. Int. J. Theor. Phys. 51, 69–77 (2012)MATHCrossRef
44.
Zurück zum Zitat Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)MathSciNetMATHCrossRef Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)MathSciNetMATHCrossRef
45.
Zurück zum Zitat Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0433-4 Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. (2012). doi:10.​1007/​s11128-012-0433-4
46.
Zurück zum Zitat MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Mathematical Lib, North-Holland (1977) MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Mathematical Lib, North-Holland (1977)
47.
Zurück zum Zitat Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)ADSCrossRef Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)ADSCrossRef
48.
Zurück zum Zitat Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996) Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996)
49.
Zurück zum Zitat Steane, A.M.: Error Correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996) Steane, A.M.: Error Correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)
50.
Zurück zum Zitat Wang, X.B.: Quantum error-rejection code with spontaneous parametric down-conversion. Phys. Rev. A 69, 022320 (2004)ADSCrossRef Wang, X.B.: Quantum error-rejection code with spontaneous parametric down-conversion. Phys. Rev. A 69, 022320 (2004)ADSCrossRef
51.
Zurück zum Zitat Chen, T.Y., Zhang, J., Boileau, J.C., Jin, X.M., Yang, B., Zhang, Q., Yang, T., Laflamme, R., Pan, J.W.: Experimental quantum communication without a shared reference frame. Phys. Rev. Lett. 96, 150504 (2006)ADSCrossRef Chen, T.Y., Zhang, J., Boileau, J.C., Jin, X.M., Yang, B., Zhang, Q., Yang, T., Laflamme, R., Pan, J.W.: Experimental quantum communication without a shared reference frame. Phys. Rev. Lett. 96, 150504 (2006)ADSCrossRef
52.
Zurück zum Zitat Lidar, D.A., Chuang, Il, Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)ADSCrossRef Lidar, D.A., Chuang, Il, Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)ADSCrossRef
53.
Zurück zum Zitat Lidar, D.A., Bacon, D., Kempe, J., Whaley, K.B.: Protecting quantum information encoded in decoherence-free states against exchange errors. Phys. Rev. A 61, 052307 (2000)ADSCrossRef Lidar, D.A., Bacon, D., Kempe, J., Whaley, K.B.: Protecting quantum information encoded in decoherence-free states against exchange errors. Phys. Rev. A 61, 052307 (2000)ADSCrossRef
54.
Zurück zum Zitat Kempe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A. 63, 042307 (2001)ADSCrossRef Kempe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A. 63, 042307 (2001)ADSCrossRef
55.
Zurück zum Zitat Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)ADSCrossRef Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)ADSCrossRef
57.
Zurück zum Zitat Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)ADSCrossRef Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)ADSCrossRef
58.
Zurück zum Zitat Ji, C.H., Yee, Y., Choi, J., Kim, S.H., Bu, J.U.: Electromagnetic 2\(\times \)2 MEMS optical switch. IEEE J. Sel. Top. Quantum Electron. 10, 345 (2004) Ji, C.H., Yee, Y., Choi, J., Kim, S.H., Bu, J.U.: Electromagnetic 2\(\times \)2 MEMS optical switch. IEEE J. Sel. Top. Quantum Electron. 10, 345 (2004)
59.
Zurück zum Zitat Gao, F., Qin, S., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329C334 (2007)MathSciNet Gao, F., Qin, S., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329C334 (2007)MathSciNet
60.
Zurück zum Zitat Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)ADSCrossRef Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)ADSCrossRef
61.
Zurück zum Zitat Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: quantum exam. Phys. Lett. A 360, 748–750 (2007) [Phys. Lett. A 350, 174 (2006)] Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: quantum exam. Phys. Lett. A 360, 748–750 (2007) [Phys. Lett. A 350, 174 (2006)]
62.
Zurück zum Zitat Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192–195 (2010)ADSCrossRef Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192–195 (2010)ADSCrossRef
63.
Zurück zum Zitat Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101, 208901 (2008)ADSCrossRef Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101, 208901 (2008)ADSCrossRef
64.
Zurück zum Zitat Song, T.T., Zhang, J., Gao, F., Wen, Q.Y., Zhu, F.C.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)ADSCrossRef Song, T.T., Zhang, J., Gao, F., Wen, Q.Y., Zhu, F.C.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)ADSCrossRef
65.
Zurück zum Zitat Guo, F.Z., Qin, S.J., Gao, F., Zhu, F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010)ADSCrossRef Guo, F.Z., Qin, S.J., Gao, F., Zhu, F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010)ADSCrossRef
66.
Zurück zum Zitat Lin, S., Gao, F., Guo, F.Z., Zhu, F.C.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007)MathSciNetADSCrossRef Lin, S., Gao, F., Guo, F.Z., Zhu, F.C.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007)MathSciNetADSCrossRef
67.
Zurück zum Zitat Li, Y.B., Wen, Q.Y., Qin, S.: Comment on secure multiparty computation with a dishonest majority via quantum means. Phys. Rev. A 84, 016301 (2011)ADSCrossRef Li, Y.B., Wen, Q.Y., Qin, S.: Comment on secure multiparty computation with a dishonest majority via quantum means. Phys. Rev. A 84, 016301 (2011)ADSCrossRef
68.
Zurück zum Zitat Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)ADSCrossRef Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)ADSCrossRef
69.
Zurück zum Zitat Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)ADSCrossRef Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)ADSCrossRef
Metadaten
Titel
Quantum private comparison against decoherence noise
verfasst von
Yan-Bing Li
Su-Juan Qin
Zheng Yuan
Wei Huang
Ying Sun
Publikationsdatum
01.06.2013
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 6/2013
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-012-0517-1

Weitere Artikel der Ausgabe 6/2013

Quantum Information Processing 6/2013 Zur Ausgabe

Neuer Inhalt