Skip to main content
Erschienen in: Quantum Information Processing 3/2017

01.03.2017

Teleportation of a qubit using entangled non-orthogonal states: a comparative study

verfasst von: Mitali Sisodia, Vikram Verma, Kishore Thapliyal, Anirban Pathak

Erschienen in: Quantum Information Processing | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of non-orthogonality of an entangled non-orthogonal state-based quantum channel is investigated in detail in the context of the teleportation of a qubit. Specifically, average fidelity, minimum fidelity and minimum assured fidelity (MASFI) are obtained for teleportation of a single-qubit state using all the Bell-type entangled non-orthogonal states known as quasi-Bell states. Using Horodecki criterion, it is shown that the teleportation scheme obtained by replacing the quantum channel (Bell state) of the usual teleportation scheme by a quasi-Bell state is optimal. Further, the performance of various quasi-Bell states as teleportation channel is compared in an ideal situation (i.e., in the absence of noise) and under different noise models (e.g., amplitude and phase damping channels). It is observed that the best choice of the quasi-Bell state depends on the amount non-orthogonality, both in noisy and noiseless case. A specific quasi-Bell state, which was found to be maximally entangled in the ideal conditions, is shown to be less efficient as a teleportation channel compared to other quasi-Bell states in particular cases when subjected to noisy channels. It has also been observed that usually the value of average fidelity falls with an increase in the number of qubits exposed to noisy channels (viz., Alice’s, Bob’s and to be teleported qubits), but the converse may be observed in some particular cases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operations on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMathSciNetCrossRefMATH Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operations on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMathSciNetCrossRefMATH
2.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefMATH Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefMATH
3.
Zurück zum Zitat Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)ADSCrossRef Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)ADSCrossRef
4.
Zurück zum Zitat Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)ADSCrossRef Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)ADSCrossRef
5.
Zurück zum Zitat Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 09, 389–403 (2011)CrossRefMATH Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 09, 389–403 (2011)CrossRefMATH
6.
Zurück zum Zitat Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196–1199 (2010)ADSCrossRef Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196–1199 (2010)ADSCrossRef
9.
Zurück zum Zitat Shukla, C., Pathak, A.: Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits. Quantum Inf. Process. 13, 2099–2113 (2014)ADSMathSciNetCrossRefMATH Shukla, C., Pathak, A.: Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits. Quantum Inf. Process. 13, 2099–2113 (2014)ADSMathSciNetCrossRefMATH
10.
Zurück zum Zitat Adhikari, S., Majumdar, A.S., Home, D., Pan, A.K., Joshi, P.: Quantum teleportation using non-orthogonal entangled channels. Phys. Scr. 85, 045001 (2012)ADSCrossRefMATH Adhikari, S., Majumdar, A.S., Home, D., Pan, A.K., Joshi, P.: Quantum teleportation using non-orthogonal entangled channels. Phys. Scr. 85, 045001 (2012)ADSCrossRefMATH
11.
12.
Zurück zum Zitat Mann, A., Sanders, B.C., Munro, W.J.: Bell’s inequality for an entanglement of nonorthogonal states. Phys. Rev. A 51, 989–991 (1995) Mann, A., Sanders, B.C., Munro, W.J.: Bell’s inequality for an entanglement of nonorthogonal states. Phys. Rev. A 51, 989–991 (1995)
13.
Zurück zum Zitat Van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)ADSCrossRef Van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)ADSCrossRef
14.
Zurück zum Zitat Peres, A.: Unperformed experiments have no results. Am. J. Phys. 46, 745–747 (1978)ADSCrossRef Peres, A.: Unperformed experiments have no results. Am. J. Phys. 46, 745–747 (1978)ADSCrossRef
17.
Zurück zum Zitat Prakash, H., Chandra, N., Prakash, R.: Improving the teleportation of entangled coherent states. Phys. Rev. A 75, 044305 (2007)ADSCrossRef Prakash, H., Chandra, N., Prakash, R.: Improving the teleportation of entangled coherent states. Phys. Rev. A 75, 044305 (2007)ADSCrossRef
18.
Zurück zum Zitat Mishra, M.K., Prakash, H.: Teleportation of a two-mode entangled coherent state encoded with two-qubit information. J. Phys. B: At. Mol. Opt. Phys. 43, 185501 (2010)ADSCrossRef Mishra, M.K., Prakash, H.: Teleportation of a two-mode entangled coherent state encoded with two-qubit information. J. Phys. B: At. Mol. Opt. Phys. 43, 185501 (2010)ADSCrossRef
19.
Zurück zum Zitat Prakash, H., Mishra, M.K.: Increasing Average Fidelity by Using Non-Maximally Entangled Resource in Teleportation of Superposed Coherent States. arxiv:1107.2533 (2011) Prakash, H., Mishra, M.K.: Increasing Average Fidelity by Using Non-Maximally Entangled Resource in Teleportation of Superposed Coherent States. arxiv:​1107.​2533 (2011)
20.
Zurück zum Zitat Wang, X., Sanders, B.C., Pan, S.H.: Entangled coherent states for systems with SU(2) and SU(1,1) symmetries. J. Phys. A: Math. Gen. 33, 7451 (2000)ADSMathSciNetCrossRefMATH Wang, X., Sanders, B.C., Pan, S.H.: Entangled coherent states for systems with SU(2) and SU(1,1) symmetries. J. Phys. A: Math. Gen. 33, 7451 (2000)ADSMathSciNetCrossRefMATH
21.
Zurück zum Zitat Prakash, H., Chandra, N., Prakash, R., Shivani, : Swapping between two pairs of nonorthogonal entangled coherent states. Int. J. Mod. Phys. B. 23, 2083–2092 (2009)ADSCrossRefMATH Prakash, H., Chandra, N., Prakash, R., Shivani, : Swapping between two pairs of nonorthogonal entangled coherent states. Int. J. Mod. Phys. B. 23, 2083–2092 (2009)ADSCrossRefMATH
22.
Zurück zum Zitat Kumar, S.A., Prakash, H., Chandra, N., Prakash, R.: Noise in swapping between two pairs of non-orthogonal entangled coherent states. Mod. Phys. Lett. B. 27, 1350017 (2013)ADSCrossRef Kumar, S.A., Prakash, H., Chandra, N., Prakash, R.: Noise in swapping between two pairs of non-orthogonal entangled coherent states. Mod. Phys. Lett. B. 27, 1350017 (2013)ADSCrossRef
23.
Zurück zum Zitat Dong, L., Wang, J.X., Xiu, X.M., Li, D., Gao, Y.J., Yi, X.X.: A continuous variable quantum key distribution protocol based on entanglement swapping of quasi-Bell entangled coherent states. Int. J. Theor. Phys. 53, 3173–3190 (2014)CrossRefMATH Dong, L., Wang, J.X., Xiu, X.M., Li, D., Gao, Y.J., Yi, X.X.: A continuous variable quantum key distribution protocol based on entanglement swapping of quasi-Bell entangled coherent states. Int. J. Theor. Phys. 53, 3173–3190 (2014)CrossRefMATH
24.
25.
26.
Zurück zum Zitat Prakash, H., Chandra, N., Prakash, R.: Effect of decoherence on fidelity in teleportation using entangled coherent states. J. Phys. B: At. Mol. Opt. Phys. 40, 1613 (2007)ADSCrossRefMATH Prakash, H., Chandra, N., Prakash, R.: Effect of decoherence on fidelity in teleportation using entangled coherent states. J. Phys. B: At. Mol. Opt. Phys. 40, 1613 (2007)ADSCrossRefMATH
27.
Zurück zum Zitat Prakash, H., Chandra, N., Prakash, R., Shivani: Effect of decoherence on fidelity in teleportation of entangled coherent states. Int. J. Quantum Inf. 6, 1077–1092 (2008) Prakash, H., Chandra, N., Prakash, R., Shivani: Effect of decoherence on fidelity in teleportation of entangled coherent states. Int. J. Quantum Inf. 6, 1077–1092 (2008)
28.
30.
Zurück zum Zitat Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15, 4681 (2016)ADSMathSciNetCrossRef Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15, 4681 (2016)ADSMathSciNetCrossRef
31.
Zurück zum Zitat Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)ADSMathSciNetCrossRefMATH Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)ADSMathSciNetCrossRefMATH
32.
Zurück zum Zitat Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)ADSMathSciNetCrossRefMATH Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)ADSMathSciNetCrossRefMATH
33.
Zurück zum Zitat Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)ADSMathSciNetCrossRefMATH Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)ADSMathSciNetCrossRefMATH
34.
Zurück zum Zitat Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)MATH Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)MATH
35.
Zurück zum Zitat Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)ADSCrossRef Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)ADSCrossRef
36.
Zurück zum Zitat Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSCrossRef Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSCrossRef
37.
38.
Zurück zum Zitat Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)ADSCrossRef Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)ADSCrossRef
39.
Zurück zum Zitat Prakash, H., Verma, V.: Minimum assured fidelity and minimum average fidelity in quantum teleportation of single qubit using non-maximally entangled states. Quantum Inf. Process. 11, 1951–1959 (2012)ADSMathSciNetCrossRefMATH Prakash, H., Verma, V.: Minimum assured fidelity and minimum average fidelity in quantum teleportation of single qubit using non-maximally entangled states. Quantum Inf. Process. 11, 1951–1959 (2012)ADSMathSciNetCrossRefMATH
41.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefMATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefMATH
42.
Zurück zum Zitat Banerjee, A., Shukla, C., Thapliyal, K, Pathak, A., Panigrahi, P. K.: Asymmetric Quantum Dialogue in Noisy Environment. Quantum Inf. Process. 16, 49 (2017). doi:10.1007/s11128-016-1508-4 Banerjee, A., Shukla, C., Thapliyal, K, Pathak, A., Panigrahi, P. K.: Asymmetric Quantum Dialogue in Noisy Environment. Quantum Inf. Process. 16, 49 (2017). doi:10.​1007/​s11128-016-1508-4
43.
44.
Zurück zum Zitat Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin–qubit systems. Ann. Phys. 362, 261 (2015)ADSMathSciNetCrossRefMATH Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin–qubit systems. Ann. Phys. 362, 261 (2015)ADSMathSciNetCrossRefMATH
Metadaten
Titel
Teleportation of a qubit using entangled non-orthogonal states: a comparative study
verfasst von
Mitali Sisodia
Vikram Verma
Kishore Thapliyal
Anirban Pathak
Publikationsdatum
01.03.2017
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 3/2017
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-017-1526-x

Weitere Artikel der Ausgabe 3/2017

Quantum Information Processing 3/2017 Zur Ausgabe