Skip to main content
Erschienen in: Quantum Information Processing 12/2018

01.12.2018

Multi-image encryption scheme based on quantum 3D Arnold transform and scaled Zhongtang chaotic system

verfasst von: Nanrun Zhou, Xingyu Yan, Haoran Liang, Xiangyang Tao, Guangyong Li

Erschienen in: Quantum Information Processing | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A quantum representation model for multiple images is firstly proposed, which could save more storage space than the existing quantum image representation models and allow quantum hardware to encrypt an arbitrary number of images simultaneously. Moreover, the definition and the quantum circuit of quantum 3D Arnold transform are given based on the proposed quantum representation model for multiple images. Furthermore, a novel quantum multi-image encryption scheme is devised by combining quantum 3D Arnold transform and quantum XOR operations with scaled Zhongtang chaotic system. Theoretically, the proposed quantum image encryption scheme could encrypt many images simultaneously. Numerical simulations and theoretical analyses demonstrate that the proposed quantum multi-image encryption scheme outperforms both its classical counterparts and the existing typical quantum image encryption algorithms in terms of security, robustness, encryption capacity and computational complexity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
2.
Zurück zum Zitat Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A400, 97–117 (1985)ADSMathSciNetCrossRef Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A400, 97–117 (1985)ADSMathSciNetCrossRef
3.
Zurück zum Zitat Vlatko, V., Adriano, B., Artur, E.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)ADSMathSciNetCrossRef Vlatko, V., Adriano, B., Artur, E.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)ADSMathSciNetCrossRef
4.
Zurück zum Zitat Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: new trends in artificial intelligence. In: Proceedings of the International Conference on Artificial Intelligence IJCAI-03, pp. 1563–1564 (2003) Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: new trends in artificial intelligence. In: Proceedings of the International Conference on Artificial Intelligence IJCAI-03, pp. 1563–1564 (2003)
7.
Zurück zum Zitat Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium Theory of Computing (STOC 1996), pp. 212–219. ACM, New York (1996) Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium Theory of Computing (STOC 1996), pp. 212–219. ACM, New York (1996)
8.
Zurück zum Zitat Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Almitos, CA (1994) Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Almitos, CA (1994)
9.
Zurück zum Zitat Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003) Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003)
11.
Zurück zum Zitat Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum system. J. Quantum. Inf. Process. 9(1), 1–11 (2010)MathSciNetCrossRef Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum system. J. Quantum. Inf. Process. 9(1), 1–11 (2010)MathSciNetCrossRef
12.
Zurück zum Zitat Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRef Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRef
13.
Zurück zum Zitat Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)CrossRef Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)CrossRef
14.
Zurück zum Zitat Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRef Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRef
15.
Zurück zum Zitat Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)ADSMathSciNetCrossRef Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)ADSMathSciNetCrossRef
16.
Zurück zum Zitat Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)ADSMathSciNetCrossRef Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)ADSMathSciNetCrossRef
17.
Zurück zum Zitat Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)ADSMathSciNetCrossRef Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)ADSMathSciNetCrossRef
18.
Zurück zum Zitat Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)ADSMathSciNetCrossRef Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)ADSMathSciNetCrossRef
19.
Zurück zum Zitat Zhou, R., Sun, Y., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2014)ADSMathSciNetCrossRef Zhou, R., Sun, Y., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2014)ADSMathSciNetCrossRef
20.
21.
Zurück zum Zitat Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)MathSciNetCrossRef Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)MathSciNetCrossRef
23.
Zurück zum Zitat Tong, X.J., Zhang, M., Wang, Z., Ma, J.: A joint color image encryption and compression scheme based on hyper-chaotic system. Nonlinear Dyn. 84(4), 2333–2356 (2016)CrossRef Tong, X.J., Zhang, M., Wang, Z., Ma, J.: A joint color image encryption and compression scheme based on hyper-chaotic system. Nonlinear Dyn. 84(4), 2333–2356 (2016)CrossRef
24.
Zurück zum Zitat Li, C., Luo, G., Qin, K., Li, C.: An image encryption scheme based on chaotic tent map. Nonlinear Dyn. 87(1), 127–133 (2017)CrossRef Li, C., Luo, G., Qin, K., Li, C.: An image encryption scheme based on chaotic tent map. Nonlinear Dyn. 87(1), 127–133 (2017)CrossRef
25.
Zurück zum Zitat Zhu, H., Zhang, X., Yu, H., Zhao, C., Zhu, Z.: An image encryption algorithm based on compound homogeneous hyper-chaotic system. Nonlinear Dyn. 89(1), 61–79 (2017)CrossRef Zhu, H., Zhang, X., Yu, H., Zhao, C., Zhu, Z.: An image encryption algorithm based on compound homogeneous hyper-chaotic system. Nonlinear Dyn. 89(1), 61–79 (2017)CrossRef
26.
Zurück zum Zitat Khan, M.: A novel image encryption scheme based on multiple chaotic S-boxes. Nonlinear Dyn. 82(1–2), 527–533 (2015)MathSciNetCrossRef Khan, M.: A novel image encryption scheme based on multiple chaotic S-boxes. Nonlinear Dyn. 82(1–2), 527–533 (2015)MathSciNetCrossRef
27.
Zurück zum Zitat Li, C., Xie, T., Liu, Q., Cheng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78(2), 1545–1551 (2014)CrossRef Li, C., Xie, T., Liu, Q., Cheng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78(2), 1545–1551 (2014)CrossRef
28.
Zurück zum Zitat Li, C., Liu, Y., Xie, T., Chen, M.Z.: Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 73(3), 2083–2089 (2013)MathSciNetCrossRef Li, C., Liu, Y., Xie, T., Chen, M.Z.: Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 73(3), 2083–2089 (2013)MathSciNetCrossRef
29.
Zurück zum Zitat Solak, E., Çokal, C.: Algebraic break of a cryptosystem based on discretized two-dimensional chaotic maps. Phys. Lett. A 373(15), 1352–1356 (2009)ADSMathSciNetCrossRef Solak, E., Çokal, C.: Algebraic break of a cryptosystem based on discretized two-dimensional chaotic maps. Phys. Lett. A 373(15), 1352–1356 (2009)ADSMathSciNetCrossRef
30.
Zurück zum Zitat Solak, E., Çokal, C.: Algebraic break of image ciphers based on discretized chaotic map lattices. Inf. Sci. 181(1), 227–233 (2011)MathSciNetCrossRef Solak, E., Çokal, C.: Algebraic break of image ciphers based on discretized chaotic map lattices. Inf. Sci. 181(1), 227–233 (2011)MathSciNetCrossRef
31.
Zurück zum Zitat Özkaynak, F., Yavuz, S.: Analysis and improvement of a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Nonlinear Dyn. 78(2), 1311–1320 (2014)CrossRef Özkaynak, F., Yavuz, S.: Analysis and improvement of a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Nonlinear Dyn. 78(2), 1311–1320 (2014)CrossRef
32.
Zurück zum Zitat Akhshani, A., Akhavan, A., Lim, S.C., Hassan, Z.: An image encryption scheme based on quantum logistic map. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4653–4661 (2012)ADSMathSciNetCrossRef Akhshani, A., Akhavan, A., Lim, S.C., Hassan, Z.: An image encryption scheme based on quantum logistic map. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4653–4661 (2012)ADSMathSciNetCrossRef
33.
Zurück zum Zitat Seyedzadeh, S., Norouzi, B., Mosavi, M., Mirzakuchaki, S.: A novel color image encryption algorithm based on spatial permutation and quantum chaotic map. Nonlinear Dyn. 81(1–2), 511–529 (2015)MathSciNetCrossRef Seyedzadeh, S., Norouzi, B., Mosavi, M., Mirzakuchaki, S.: A novel color image encryption algorithm based on spatial permutation and quantum chaotic map. Nonlinear Dyn. 81(1–2), 511–529 (2015)MathSciNetCrossRef
34.
Zurück zum Zitat Abd El-Latif, A.A., Li, L., Wang, N., Han, Q., Niu, X.M.: A new approach to chaotic image encryption based on quantum chaotic systems, exploiting color spaces. Signal Process. 93(11), 2986–3000 (2013)CrossRef Abd El-Latif, A.A., Li, L., Wang, N., Han, Q., Niu, X.M.: A new approach to chaotic image encryption based on quantum chaotic systems, exploiting color spaces. Signal Process. 93(11), 2986–3000 (2013)CrossRef
35.
Zurück zum Zitat Wang, H., Wang, J., Geng, Y.: Quantum image encryption based on iterative framework of frequency-spatial domain transforms. Int. J. Theor. Phys. 8, 1–21 (2017)MathSciNetMATH Wang, H., Wang, J., Geng, Y.: Quantum image encryption based on iterative framework of frequency-spatial domain transforms. Int. J. Theor. Phys. 8, 1–21 (2017)MathSciNetMATH
36.
Zurück zum Zitat Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)ADSMathSciNetCrossRef Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)ADSMathSciNetCrossRef
37.
Zurück zum Zitat Liang, H.R., Tao, X.Y., Zhou, N.R.: Quantum image encryption based on generalized affine transform and logistic map. Quantum Inf. Process. 15, 2701–2724 (2016)ADSMathSciNetCrossRef Liang, H.R., Tao, X.Y., Zhou, N.R.: Quantum image encryption based on generalized affine transform and logistic map. Quantum Inf. Process. 15, 2701–2724 (2016)ADSMathSciNetCrossRef
38.
Zurück zum Zitat Yang, Y., Tian, J., Lei, H., Zhou, Y., Shi, W.: Novel quantum image encryption using one-dimensional quantum cellular automata. Inform. Sci. 345, 257–270 (2016)CrossRef Yang, Y., Tian, J., Lei, H., Zhou, Y., Shi, W.: Novel quantum image encryption using one-dimensional quantum cellular automata. Inform. Sci. 345, 257–270 (2016)CrossRef
39.
Zurück zum Zitat Yang, Y.G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6, 19788 (2016)ADSCrossRef Yang, Y.G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6, 19788 (2016)ADSCrossRef
40.
Zurück zum Zitat Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)MathSciNetCrossRef Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)MathSciNetCrossRef
41.
Zurück zum Zitat Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRef Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRef
42.
Zurück zum Zitat Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)ADSMathSciNetCrossRef Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)ADSMathSciNetCrossRef
43.
Zurück zum Zitat Zhou, N.R., Chen, W.W., Yan, X.Y., Wang, Y.Q.: Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Inf. Process. 17, 1–24 (2018)MathSciNetCrossRef Zhou, N.R., Chen, W.W., Yan, X.Y., Wang, Y.Q.: Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Inf. Process. 17, 1–24 (2018)MathSciNetCrossRef
44.
Zurück zum Zitat Li, P., Zhao, Y.: A simple encryption algorithm for quantum color image. Int. J. Theor. Phys. 56(7), 1961–1982 (2017)MathSciNetCrossRef Li, P., Zhao, Y.: A simple encryption algorithm for quantum color image. Int. J. Theor. Phys. 56(7), 1961–1982 (2017)MathSciNetCrossRef
45.
Zurück zum Zitat Zhou, N.R., Hu, Y.Q., Gong, L.H., Li, G.Y.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16, 164–186 (2017)ADSMathSciNetCrossRef Zhou, N.R., Hu, Y.Q., Gong, L.H., Li, G.Y.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16, 164–186 (2017)ADSMathSciNetCrossRef
46.
Zurück zum Zitat Situ, G., Zhang, J.: Multiple-image encryption by wavelength multiplexing. Opt. Lett. 30(11), 1306–1308 (2005)ADSCrossRef Situ, G., Zhang, J.: Multiple-image encryption by wavelength multiplexing. Opt. Lett. 30(11), 1306–1308 (2005)ADSCrossRef
47.
Zurück zum Zitat Deepan, B., Quan, C., Wang, Y., Tay, C.: Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique. Appl. Opt. 53(20), 4539–4547 (2014)ADSCrossRef Deepan, B., Quan, C., Wang, Y., Tay, C.: Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique. Appl. Opt. 53(20), 4539–4547 (2014)ADSCrossRef
48.
Zurück zum Zitat Wang, Q., Guo, Q., Zhou, J.Y.: Double image encryption based on linear blend operation and random phase encoding in fractional Fourier domain. Opt. Commun. 285(21–22), 4317–4323 (2012)ADSCrossRef Wang, Q., Guo, Q., Zhou, J.Y.: Double image encryption based on linear blend operation and random phase encoding in fractional Fourier domain. Opt. Commun. 285(21–22), 4317–4323 (2012)ADSCrossRef
49.
Zurück zum Zitat Pan, S.M., Wen, R.H., Zhou, Z.H., Zhou, N.R.: Optical multi-image encryption scheme based on discrete cosine transform and nonlinear fractional Mellin transform. Multimed. Tools Appl. 76(2), 2933–2953 (2017)CrossRef Pan, S.M., Wen, R.H., Zhou, Z.H., Zhou, N.R.: Optical multi-image encryption scheme based on discrete cosine transform and nonlinear fractional Mellin transform. Multimed. Tools Appl. 76(2), 2933–2953 (2017)CrossRef
50.
Zurück zum Zitat Hu, Y.Q., Xie, X.W., Liu, X.B., Zhou, N.R.: Quantum multi-image encryption based on iteration Arnold transform with parameters and image correlation decomposition. Int. J. Theor. Phys. 56(7), 2192–2205 (2017)MathSciNetCrossRef Hu, Y.Q., Xie, X.W., Liu, X.B., Zhou, N.R.: Quantum multi-image encryption based on iteration Arnold transform with parameters and image correlation decomposition. Int. J. Theor. Phys. 56(7), 2192–2205 (2017)MathSciNetCrossRef
51.
Zurück zum Zitat Çavuşoğlu, Ü., Kaçar, S., Zengin, A., Pehlivan, I.: A novel hybrid encryption algorithm based on chaos and S-AES algorithm. Nonlinear Dyn. 92(4), 1745–1759 (2018)CrossRef Çavuşoğlu, Ü., Kaçar, S., Zengin, A., Pehlivan, I.: A novel hybrid encryption algorithm based on chaos and S-AES algorithm. Nonlinear Dyn. 92(4), 1745–1759 (2018)CrossRef
52.
Zurück zum Zitat Lian, S.G., Mao, Y.B., Wang, Z.Q.: 3D extensions of some 2D chaotic maps and their usage in data encryption. In: International Conference on Control and Automation, 2003. ICCA’03. Proceedings, pp. 819–823. IEEE (2003) Lian, S.G., Mao, Y.B., Wang, Z.Q.: 3D extensions of some 2D chaotic maps and their usage in data encryption. In: International Conference on Control and Automation, 2003. ICCA’03. Proceedings, pp. 819–823. IEEE (2003)
53.
Zurück zum Zitat Zhou, N.R., Jiang, H., Gong, L.H., Xie, X.W.: Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging. Opt. Lasers Eng. 110, 72–79 (2018)CrossRef Zhou, N.R., Jiang, H., Gong, L.H., Xie, X.W.: Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging. Opt. Lasers Eng. 110, 72–79 (2018)CrossRef
54.
Zurück zum Zitat Chen, J., Zhu, Z., Fu, C., Yu, H.: A fast image encryption scheme with a novel pixel swapping-based confusion approach. Nonlinear Dyn. 77(4), 1191–1207 (2014)CrossRef Chen, J., Zhu, Z., Fu, C., Yu, H.: A fast image encryption scheme with a novel pixel swapping-based confusion approach. Nonlinear Dyn. 77(4), 1191–1207 (2014)CrossRef
55.
Zurück zum Zitat Bhatnagar, G., Wu, Q.M.J., Raman, B.: Discrete fractional wavelet transform and its application to multiple encryption. Inf. Sci. 223, 297–316 (2013)MathSciNetCrossRef Bhatnagar, G., Wu, Q.M.J., Raman, B.: Discrete fractional wavelet transform and its application to multiple encryption. Inf. Sci. 223, 297–316 (2013)MathSciNetCrossRef
Metadaten
Titel
Multi-image encryption scheme based on quantum 3D Arnold transform and scaled Zhongtang chaotic system
verfasst von
Nanrun Zhou
Xingyu Yan
Haoran Liang
Xiangyang Tao
Guangyong Li
Publikationsdatum
01.12.2018
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 12/2018
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-2104-6

Weitere Artikel der Ausgabe 12/2018

Quantum Information Processing 12/2018 Zur Ausgabe