Skip to main content
Erschienen in: Quantum Information Processing 9/2019

01.09.2019

A universal protocol for controlled bidirectional quantum state transmission

verfasst von: Yi-Ru Sun, Nan Xiang, Zhao Dou, Gang Xu, Xiu-Bo Chen, Yi-Xian Yang

Erschienen in: Quantum Information Processing | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a universal protocol for controlled bidirectional quantum state transmission. The bidirectional transmission of \( n_{1} \)- and \( n_{2} \)-qubit equatorial states can be realized by using the \( 2n_{1} + 2n_{2} + 1 \)-qubit entangled state as the quantum channel, where \( n_{1} ,n_{2} \) are arbitrary nonzero positive integers. First, the quantum channel is constructed by using Hadamard (H) and CNOT operations. Furthermore, after the protocol completed, the desired state can be obtained simultaneously, securely and determinately. Second, two examples are given. One is a symmetric protocol which can complete the bidirectional transmission of two-qubit equatorial state. The other is an asymmetric protocol, where Alice transmits a single-qubit equatorial state to Bob and Bob transmits a four-qubit equatorial state to Alice. To the best of our knowledge, it is the first time to realize the bidirectional transmission of arbitrary-qubit equatorial state. At last, we analyze the performance of the protocol. Some comparisons with other protocols are described.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)ADSCrossRef Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)ADSCrossRef
2.
Zurück zum Zitat Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017)ADSCrossRef Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017)ADSCrossRef
3.
Zurück zum Zitat Fortes, R., Rigolin, G.: Probabilistic quantum teleportation via thermal entanglement. Phys. Rev. A 96(2), 022315 (2017)ADSCrossRef Fortes, R., Rigolin, G.: Probabilistic quantum teleportation via thermal entanglement. Phys. Rev. A 96(2), 022315 (2017)ADSCrossRef
4.
5.
Zurück zum Zitat Huang, L., Zhao, H.X.: Controlled remote state preparation of an arbitrary two-qubit state by using GHZ states. Int. J. Theor. Phys. 56(3), 678–682 (2017)CrossRef Huang, L., Zhao, H.X.: Controlled remote state preparation of an arbitrary two-qubit state by using GHZ states. Int. J. Theor. Phys. 56(3), 678–682 (2017)CrossRef
6.
Zurück zum Zitat Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14(1), 373–379 (2015)ADSMathSciNetCrossRef Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14(1), 373–379 (2015)ADSMathSciNetCrossRef
7.
Zurück zum Zitat Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87(19), 197901 (2001)ADSCrossRef Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87(19), 197901 (2001)ADSCrossRef
8.
Zurück zum Zitat Cao, T.B., Nguyen, B.A.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. 5(1), 015003 (2013)CrossRef Cao, T.B., Nguyen, B.A.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. 5(1), 015003 (2013)CrossRef
9.
Zurück zum Zitat Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)ADSMathSciNetCrossRef Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)ADSMathSciNetCrossRef
10.
Zurück zum Zitat Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14(11), 4263–4278 (2015)ADSMathSciNetCrossRef Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14(11), 4263–4278 (2015)ADSMathSciNetCrossRef
11.
Zurück zum Zitat Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)CrossRef Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)CrossRef
12.
Zurück zum Zitat Zhang, D., Zha, X., Duan, Y., Wei, Z.H.: Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Int. J. Theor. Phys. 55(1), 440–446 (2016)CrossRef Zhang, D., Zha, X., Duan, Y., Wei, Z.H.: Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Int. J. Theor. Phys. 55(1), 440–446 (2016)CrossRef
13.
Zurück zum Zitat Zhang, D., Zha, X., Duan, Y., Yang, Y.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169–2179 (2016)ADSMathSciNetCrossRef Zhang, D., Zha, X., Duan, Y., Yang, Y.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169–2179 (2016)ADSMathSciNetCrossRef
14.
Zurück zum Zitat Sang, Z.W.: Bidirectional controlled quantum information transmission by using a five-qubit cluster state. Int. J. Theor. Phys. 56(11), 3400–3404 (2017)MathSciNetCrossRef Sang, Z.W.: Bidirectional controlled quantum information transmission by using a five-qubit cluster state. Int. J. Theor. Phys. 56(11), 3400–3404 (2017)MathSciNetCrossRef
15.
Zurück zum Zitat Song, Y., Ni, J.L., Wang, Z.Y., Lu, Y., Han, L.F.: Deterministic bidirectional remote state preparation of a-and symmetric quantum states with a proper quantum channel. Int. J. Theor. Phys. 56(10), 3175–3187 (2017)CrossRef Song, Y., Ni, J.L., Wang, Z.Y., Lu, Y., Han, L.F.: Deterministic bidirectional remote state preparation of a-and symmetric quantum states with a proper quantum channel. Int. J. Theor. Phys. 56(10), 3175–3187 (2017)CrossRef
16.
Zurück zum Zitat Wu, H., Zha, X.W., Yang, Y.Q.: Controlled bidirectional hybrid of remote state preparation and quantum teleportation via seven-qubit entangled state. Int. J. Theor. Phys. 57(1), 28–35 (2018)CrossRef Wu, H., Zha, X.W., Yang, Y.Q.: Controlled bidirectional hybrid of remote state preparation and quantum teleportation via seven-qubit entangled state. Int. J. Theor. Phys. 57(1), 28–35 (2018)CrossRef
17.
Zurück zum Zitat Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 244 (2017)ADSCrossRef Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 244 (2017)ADSCrossRef
18.
Zurück zum Zitat Sang, M.H., Nie, L.P.: Asymmetric bidirectional controlled quantum information transmission via seven-particle entangled state. Int. J. Theor. Phys. 56(11), 3638–3641 (2017)MathSciNetCrossRef Sang, M.H., Nie, L.P.: Asymmetric bidirectional controlled quantum information transmission via seven-particle entangled state. Int. J. Theor. Phys. 56(11), 3638–3641 (2017)MathSciNetCrossRef
19.
Zurück zum Zitat Fang, S.H., Jiang, M.: A novel scheme for bidirectional and hybrid quantum information transmission via a seven-qubit state. Int. J. Theor. Phys. 57(2), 523–532 (2018)MathSciNetCrossRef Fang, S.H., Jiang, M.: A novel scheme for bidirectional and hybrid quantum information transmission via a seven-qubit state. Int. J. Theor. Phys. 57(2), 523–532 (2018)MathSciNetCrossRef
20.
Zurück zum Zitat Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Asymmetric bidirectional controlled remote preparation of an arbitrary four-qubit cluster-type state and a single-qubit state. Quantum Inf. Process. 16(12), 308 (2017)ADSMathSciNetCrossRef Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Asymmetric bidirectional controlled remote preparation of an arbitrary four-qubit cluster-type state and a single-qubit state. Quantum Inf. Process. 16(12), 308 (2017)ADSMathSciNetCrossRef
21.
Zurück zum Zitat Chen, X.B., Su, Y., Xu, G., Sun, Y., Yang, Y.X.: Quantum state secure transmission in network communications. Inf. Sci. 276, 363–376 (2014)MathSciNetCrossRef Chen, X.B., Su, Y., Xu, G., Sun, Y., Yang, Y.X.: Quantum state secure transmission in network communications. Inf. Sci. 276, 363–376 (2014)MathSciNetCrossRef
22.
Zurück zum Zitat Wei, J., Shi, L., Zhu, Y., Xue, Y., Xu, Z., Jiang, J.: Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quantum Inf. Process. 17(3), 70 (2018)ADSMathSciNetCrossRef Wei, J., Shi, L., Zhu, Y., Xue, Y., Xu, Z., Jiang, J.: Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quantum Inf. Process. 17(3), 70 (2018)ADSMathSciNetCrossRef
23.
Zurück zum Zitat Thapliyal, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. 14(12), 4601–4614 (2015)ADSMathSciNetCrossRef Thapliyal, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. 14(12), 4601–4614 (2015)ADSMathSciNetCrossRef
24.
Zurück zum Zitat Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B At. Mol. Opt. Phys. 41(14), 145506 (2008)ADSCrossRef Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B At. Mol. Opt. Phys. 41(14), 145506 (2008)ADSCrossRef
25.
Zurück zum Zitat Guo, R., Zhang, Z., Liu, X., Liu, C.: Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays. Appl. Math. Comput. 311, 100–117 (2017)MathSciNetCrossRef Guo, R., Zhang, Z., Liu, X., Liu, C.: Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays. Appl. Math. Comput. 311, 100–117 (2017)MathSciNetCrossRef
26.
Zurück zum Zitat Pang, Z., Liu, G., Zhou, D., Sun, D.: Data-based predictive control for networked nonlinear systems with packet dropout and measurement noise. J. Syst. Sci. Complexity 30, 1072–1083 (2017)MathSciNetCrossRef Pang, Z., Liu, G., Zhou, D., Sun, D.: Data-based predictive control for networked nonlinear systems with packet dropout and measurement noise. J. Syst. Sci. Complexity 30, 1072–1083 (2017)MathSciNetCrossRef
27.
Zurück zum Zitat Li, L., Wang, Z., Li, Y., Shen, H., Lu, J.: Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl. Math. Comput. 330, 152–169 (2018)MathSciNet Li, L., Wang, Z., Li, Y., Shen, H., Lu, J.: Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl. Math. Comput. 330, 152–169 (2018)MathSciNet
28.
Zurück zum Zitat Shen, H., Song, X.N., Li, F., Wang, Z., Chen, B.: Finite-time L2–L∞ filter design for networked Markov switched singular systems: a unified method. Appl. Math. Comput. 321, 450–462 (2018)MathSciNet Shen, H., Song, X.N., Li, F., Wang, Z., Chen, B.: Finite-time L2–L∞ filter design for networked Markov switched singular systems: a unified method. Appl. Math. Comput. 321, 450–462 (2018)MathSciNet
29.
Zurück zum Zitat Xu, G., Xiao, K., Li, Z.P., Niu, X.X., Ryan, M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. Comput. Mater. Continua 58(3), 809–827 (2019) Xu, G., Xiao, K., Li, Z.P., Niu, X.X., Ryan, M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. Comput. Mater. Continua 58(3), 809–827 (2019)
30.
Zurück zum Zitat Xu, G., Chen, X.B., Dou, Z., et al.: Novel criteria for deterministic remote state preparation via the entangled six-qubit state. Entropy 18, 267 (2016)ADSMathSciNetCrossRef Xu, G., Chen, X.B., Dou, Z., et al.: Novel criteria for deterministic remote state preparation via the entangled six-qubit state. Entropy 18, 267 (2016)ADSMathSciNetCrossRef
Metadaten
Titel
A universal protocol for controlled bidirectional quantum state transmission
verfasst von
Yi-Ru Sun
Nan Xiang
Zhao Dou
Gang Xu
Xiu-Bo Chen
Yi-Xian Yang
Publikationsdatum
01.09.2019
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 9/2019
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2390-7

Weitere Artikel der Ausgabe 9/2019

Quantum Information Processing 9/2019 Zur Ausgabe