Skip to main content
Erschienen in: Quantum Information Processing 7/2021

01.07.2021

Nonlocal advantage of quantum coherence and quantum discord versus internal energy in the Heisenberg chain

verfasst von: Yu-Xia Xie, Xiao-Xiao Xu

Erschienen in: Quantum Information Processing | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate the nonlocal advantage of quantum coherence (NAQC) and quantum discord (QD) for both the thermal equilibrium state and all eigenstates of the Heisenberg XXX chain. It is shown that both the NAQC and QD of two neighboring spins are completely determined by a thermodynamic potential, i.e., the internal energy for the thermal equilibrium state and the kth-level eigenenergy for the kth-level eigenstate. From the dependence of the NAQC and QD on the internal energy, we further show that they approach to their thermodynamic limits very quickly with an increase in the number of spins in the chain. We also investigate the NAQC and QD versus energy in the anisotropic Heisenberg XXZ model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ficek, Z., Swain, S.: Quantum interference and coherence: theory and experiments. Springer, Berlin (2005)MATH Ficek, Z., Swain, S.: Quantum interference and coherence: theory and experiments. Springer, Berlin (2005)MATH
2.
Zurück zum Zitat Streltsov, A., Chitambar, E., Rana, S., Bera, M.N., Winter, A., Lewenstein, M.: Entanglement and coherence in quantum state merging. Phys. Rev. Lett. 116, 240405 (2016)ADSCrossRef Streltsov, A., Chitambar, E., Rana, S., Bera, M.N., Winter, A., Lewenstein, M.: Entanglement and coherence in quantum state merging. Phys. Rev. Lett. 116, 240405 (2016)ADSCrossRef
3.
Zurück zum Zitat Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)ADSCrossRef Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)ADSCrossRef
4.
Zurück zum Zitat Hillery, M.: Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)ADSCrossRef Hillery, M.: Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)ADSCrossRef
5.
Zurück zum Zitat Hu, M.L., Hu, X., Wang, J.C., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1–100 (2018)ADSMathSciNetMATH Hu, M.L., Hu, X., Wang, J.C., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1–100 (2018)ADSMathSciNetMATH
6.
Zurück zum Zitat Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRef Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRef
7.
Zurück zum Zitat Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRef Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRef
8.
Zurück zum Zitat Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)ADSCrossRef Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)ADSCrossRef
9.
Zurück zum Zitat Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)ADSCrossRef Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)ADSCrossRef
10.
Zurück zum Zitat Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016) Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)
11.
Zurück zum Zitat Bu, K., Singh, U., Fei, S.M., Pati, A.K., Wu, J.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)ADSMathSciNetCrossRef Bu, K., Singh, U., Fei, S.M., Pati, A.K., Wu, J.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)ADSMathSciNetCrossRef
12.
Zurück zum Zitat Hu, M.L., Fan, H.: Relative quantum coherence, incompatibility, and quantum correlations of states. Phys. Rev. A 95, 052106 (2017)ADSCrossRef Hu, M.L., Fan, H.: Relative quantum coherence, incompatibility, and quantum correlations of states. Phys. Rev. A 95, 052106 (2017)ADSCrossRef
14.
Zurück zum Zitat Bu, K., Anand, N., Singh, U.: Asymmetry and coherence weight of quantum states. Phys. Rev. A 97, 032342 (2018)ADSCrossRef Bu, K., Anand, N., Singh, U.: Asymmetry and coherence weight of quantum states. Phys. Rev. A 97, 032342 (2018)ADSCrossRef
16.
Zurück zum Zitat Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)ADSCrossRef Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)ADSCrossRef
17.
Zurück zum Zitat Rastegin, A.E.: Quantum-coherence quantifiers based on the Tsallis relative \(\alpha \) entropies. Phys. Rev. A 93, 032136 (2016)ADSCrossRef Rastegin, A.E.: Quantum-coherence quantifiers based on the Tsallis relative \(\alpha \) entropies. Phys. Rev. A 93, 032136 (2016)ADSCrossRef
19.
Zurück zum Zitat Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)ADSCrossRef Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)ADSCrossRef
20.
Zurück zum Zitat Yao, Y., Dong, G.H., Ge, L., Li, M., Sun, C.P.: Maximal coherence in a generic basis. Phys. Rev. A 94, 062339 (2016)ADSCrossRef Yao, Y., Dong, G.H., Ge, L., Li, M., Sun, C.P.: Maximal coherence in a generic basis. Phys. Rev. A 94, 062339 (2016)ADSCrossRef
21.
Zurück zum Zitat Hu, M.L., Shen, S.Q., Fan, H.: Maximum coherence in the optimal basis. Phys. Rev. A 96, 052309 (2017)ADSCrossRef Hu, M.L., Shen, S.Q., Fan, H.: Maximum coherence in the optimal basis. Phys. Rev. A 96, 052309 (2017)ADSCrossRef
23.
Zurück zum Zitat Streltsov, A., Kampermann, H., Wölk, S., Gessner, M., Bruß, D.: Maximal coherence and the resource theory of purity. New J. Phys. 20, 053058 (2018)ADSMathSciNetCrossRef Streltsov, A., Kampermann, H., Wölk, S., Gessner, M., Bruß, D.: Maximal coherence and the resource theory of purity. New J. Phys. 20, 053058 (2018)ADSMathSciNetCrossRef
24.
Zurück zum Zitat Cheng, S., Hall, M.J.W.: Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101 (2015)ADSCrossRef Cheng, S., Hall, M.J.W.: Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101 (2015)ADSCrossRef
25.
26.
Zurück zum Zitat Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)ADSCrossRef Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)ADSCrossRef
27.
Zurück zum Zitat Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)ADSCrossRef Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)ADSCrossRef
28.
Zurück zum Zitat Regula, B., Fang, K., Wang, X., Adesso, G.: One-shot coherence distillation. Phys. Rev. Lett. 121, 010401 (2018)ADSCrossRef Regula, B., Fang, K., Wang, X., Adesso, G.: One-shot coherence distillation. Phys. Rev. Lett. 121, 010401 (2018)ADSCrossRef
29.
Zurück zum Zitat Fang, K., Wang, X., Lami, L., Regula, B., Adesso, G.: Probabilistic distillation of quantum coherence. Phys. Rev. Lett. 121, 070404 (2018)ADSMathSciNetCrossRef Fang, K., Wang, X., Lami, L., Regula, B., Adesso, G.: Probabilistic distillation of quantum coherence. Phys. Rev. Lett. 121, 070404 (2018)ADSMathSciNetCrossRef
30.
Zurück zum Zitat Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)ADSCrossRef Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)ADSCrossRef
31.
Zurück zum Zitat Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)ADSCrossRef Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)ADSCrossRef
32.
Zurück zum Zitat Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)ADSCrossRef Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)ADSCrossRef
33.
Zurück zum Zitat Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016)ADSCrossRef Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016)ADSCrossRef
34.
Zurück zum Zitat Hu, M.L., Fan, H.: Evolution equation for geometric quantum correlation measures. Phys. Rev. A 91, 052311 (2015)ADSCrossRef Hu, M.L., Fan, H.: Evolution equation for geometric quantum correlation measures. Phys. Rev. A 91, 052311 (2015)ADSCrossRef
35.
Zurück zum Zitat Hu, M.L., Fan, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)ADSCrossRef Hu, M.L., Fan, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)ADSCrossRef
36.
Zurück zum Zitat Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)ADSCrossRef Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)ADSCrossRef
37.
Zurück zum Zitat Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303 (2016)ADSCrossRef Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303 (2016)ADSCrossRef
38.
Zurück zum Zitat Silva, I.A., Souza, A.M., Bromley, T.R., Cianciaruso, M., Marx, R., Sarthour, R.S., Oliveira, I.S., Franco, R.L., Glaser, S.J., deAzevedo, E.R., Soares-Pinto, D.O., Adesso, G.: Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator. Phys. Rev. Lett. 117, 160402 (2016)ADSCrossRef Silva, I.A., Souza, A.M., Bromley, T.R., Cianciaruso, M., Marx, R., Sarthour, R.S., Oliveira, I.S., Franco, R.L., Glaser, S.J., deAzevedo, E.R., Soares-Pinto, D.O., Adesso, G.: Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator. Phys. Rev. Lett. 117, 160402 (2016)ADSCrossRef
39.
Zurück zum Zitat Zhang, A., Zhang, K., Zhou, L., Zhang, W.: Frozen condition of quantum coherence for atoms on a stationary trajectory. Phys. Rev. Lett. 121, 0736602 (2018) Zhang, A., Zhang, K., Zhou, L., Zhang, W.: Frozen condition of quantum coherence for atoms on a stationary trajectory. Phys. Rev. Lett. 121, 0736602 (2018)
40.
Zurück zum Zitat Hu, M., Zhou, W.: Enhancing two-qubit quantum coherence in a correlated dephasing channel. Laser Phys. Lett. 16, 045201 (2019)ADSCrossRef Hu, M., Zhou, W.: Enhancing two-qubit quantum coherence in a correlated dephasing channel. Laser Phys. Lett. 16, 045201 (2019)ADSCrossRef
41.
Zurück zum Zitat Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. (N.Y.) 366, 102 (2016)ADSMathSciNetMATHCrossRef Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. (N.Y.) 366, 102 (2016)ADSMathSciNetMATHCrossRef
42.
Zurück zum Zitat Guarnieri, G., Kolář, M., Filip, R.: Steady-state coherences by composite system-bath interactions. Phys. Rev. Lett. 121, 070401 (2018)ADSCrossRef Guarnieri, G., Kolář, M., Filip, R.: Steady-state coherences by composite system-bath interactions. Phys. Rev. Lett. 121, 070401 (2018)ADSCrossRef
43.
Zurück zum Zitat Mukhopadhyay, C.: Generating steady quantum coherence and magic through an autonomous. Phys. Rev. A 98, 012102 (2018)ADSCrossRef Mukhopadhyay, C.: Generating steady quantum coherence and magic through an autonomous. Phys. Rev. A 98, 012102 (2018)ADSCrossRef
44.
Zurück zum Zitat Hu, M.L., Fan, H.: Quantum coherence of multiqubit states in correlated noisy channels. Sci. China-Phys. Mech. Astron. 63, 230322 (2020)ADSCrossRef Hu, M.L., Fan, H.: Quantum coherence of multiqubit states in correlated noisy channels. Sci. China-Phys. Mech. Astron. 63, 230322 (2020)ADSCrossRef
45.
Zurück zum Zitat Hu, M.L., Zhang, Y.H., Fan, H.: Nonlocal advantage of quantum coherence in a dephasing channel with memory. Chin. Phys. B 30, 030308 (2021)ADSCrossRef Hu, M.L., Zhang, Y.H., Fan, H.: Nonlocal advantage of quantum coherence in a dephasing channel with memory. Chin. Phys. B 30, 030308 (2021)ADSCrossRef
46.
Zurück zum Zitat Tan, K.C., Kwon, H., Park, C.Y., Jeong, H.: Unified view of quantum correlations and quantum coherence. Phys. Rev. A 94, 022329 (2016)ADSCrossRef Tan, K.C., Kwon, H., Park, C.Y., Jeong, H.: Unified view of quantum correlations and quantum coherence. Phys. Rev. A 94, 022329 (2016)ADSCrossRef
47.
Zurück zum Zitat Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)ADSCrossRef Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)ADSCrossRef
48.
Zurück zum Zitat Zhang, J., Yang, S.R., Zhang, Y., Yu, C.S.: The classical correlation limits the ability of the measurement-induced average coherence. Sci. Rep. 7, 45598 (2017)ADSCrossRef Zhang, J., Yang, S.R., Zhang, Y., Yu, C.S.: The classical correlation limits the ability of the measurement-induced average coherence. Sci. Rep. 7, 45598 (2017)ADSCrossRef
49.
50.
Zurück zum Zitat Hu, M.L., Fan, H.: Nonlocal advantage of quantum coherence in high-dimensional states. Phys. Rev. A 98, 022312 (2018)ADSCrossRef Hu, M.L., Fan, H.: Nonlocal advantage of quantum coherence in high-dimensional states. Phys. Rev. A 98, 022312 (2018)ADSCrossRef
51.
Zurück zum Zitat Hu, M.L., Wang, X.M., Fan, H.: Hierarchy of the nonlocal advantage of quantum coherence and Bell nonlocality. Phys. Rev. A 98, 032317 (2018)ADSCrossRef Hu, M.L., Wang, X.M., Fan, H.: Hierarchy of the nonlocal advantage of quantum coherence and Bell nonlocality. Phys. Rev. A 98, 032317 (2018)ADSCrossRef
52.
Zurück zum Zitat Datta, S., Majumdar, A.S.: Sharing of nonlocal advantage of quantum coherence by sequential observers. Phys. Rev. A 98, 042311 (2018)ADSCrossRef Datta, S., Majumdar, A.S.: Sharing of nonlocal advantage of quantum coherence by sequential observers. Phys. Rev. A 98, 042311 (2018)ADSCrossRef
54.
Zurück zum Zitat Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSMATHCrossRef Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSMATHCrossRef
55.
Zurück zum Zitat Dakić, B., Vedral, V., Brukner, C̆.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSMATHCrossRef Dakić, B., Vedral, V., Brukner, C̆.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSMATHCrossRef
56.
Zurück zum Zitat Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)ADSCrossRef Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)ADSCrossRef
57.
Zurück zum Zitat Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)ADSCrossRef Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)ADSCrossRef
58.
Zurück zum Zitat Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)ADSMATHCrossRef Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)ADSMATHCrossRef
61.
Zurück zum Zitat Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)ADSCrossRef Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)ADSCrossRef
62.
Zurück zum Zitat Chang, L., Luo, S.L.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)ADSCrossRef Chang, L., Luo, S.L.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)ADSCrossRef
63.
Zurück zum Zitat Modi, K., Brodutch, A., Cable, H., Paterek, Z., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRef Modi, K., Brodutch, A., Cable, H., Paterek, Z., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRef
64.
Zurück zum Zitat Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRef Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRef
65.
Zurück zum Zitat Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)ADSCrossRef Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)ADSCrossRef
66.
Zurück zum Zitat Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)ADSCrossRef Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)ADSCrossRef
67.
Zurück zum Zitat Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)ADSCrossRef Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)ADSCrossRef
68.
Zurück zum Zitat Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)ADSCrossRef Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)ADSCrossRef
69.
Zurück zum Zitat Hu, M.L., Lian, H.L.: State transfer in intrinsic decoherence spin channels. Eur. Phys. J. D 55, 711 (2009)ADSCrossRef Hu, M.L., Lian, H.L.: State transfer in intrinsic decoherence spin channels. Eur. Phys. J. D 55, 711 (2009)ADSCrossRef
70.
Zurück zum Zitat Hu, M.L.: State transfer in dissipative and dephasing environments. Eur. Phys. J. D 59, 497 (2010)ADSCrossRef Hu, M.L.: State transfer in dissipative and dephasing environments. Eur. Phys. J. D 59, 497 (2010)ADSCrossRef
71.
Zurück zum Zitat Hu, M.L., Wang, H.F.: Protecting quantum Fisher information in correlated quantum channels. Ann. Phys. (Berlin) 532, 1900378 (2020)ADSMathSciNetCrossRef Hu, M.L., Wang, H.F.: Protecting quantum Fisher information in correlated quantum channels. Ann. Phys. (Berlin) 532, 1900378 (2020)ADSMathSciNetCrossRef
72.
Zurück zum Zitat Lagmago, G.K., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)ADSCrossRef Lagmago, G.K., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)ADSCrossRef
73.
Zurück zum Zitat Hu, M.L., Tian, D.P.: Effects of impurity on the entanglement of the three-qubit Heisenberg XXX spin chain. Sci. China Ser. G 50, 208 (2007)MATHCrossRef Hu, M.L., Tian, D.P.: Effects of impurity on the entanglement of the three-qubit Heisenberg XXX spin chain. Sci. China Ser. G 50, 208 (2007)MATHCrossRef
74.
Zurück zum Zitat Maziero, J., Guzman, H.C., Céleri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the XY spin-1/2 chain. Phys. Rev. A 82, 012106 (2010)ADSCrossRef Maziero, J., Guzman, H.C., Céleri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the XY spin-1/2 chain. Phys. Rev. A 82, 012106 (2010)ADSCrossRef
75.
Zurück zum Zitat Ciliberti, L., Rossignoli, R., Canosa, N.: Quantum discord in finite XY chains. Phys. Rev. A 82, 042316 (2010)ADSMATHCrossRef Ciliberti, L., Rossignoli, R., Canosa, N.: Quantum discord in finite XY chains. Phys. Rev. A 82, 042316 (2010)ADSMATHCrossRef
76.
Zurück zum Zitat Altintas, F., Eryigit, R.: Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems. Ann. Phys. (N.Y.) 327, 3084 (2012)ADSMATHCrossRef Altintas, F., Eryigit, R.: Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems. Ann. Phys. (N.Y.) 327, 3084 (2012)ADSMATHCrossRef
77.
Zurück zum Zitat Chen, W.X., Xie, Y.X., Xi, X.Q.: Measurement-induced nonlocality in the two-qubit Heisenberg XY model. Int. J. Mod. Phys. B 29, 1550098 (2015)ADSMathSciNetCrossRef Chen, W.X., Xie, Y.X., Xi, X.Q.: Measurement-induced nonlocality in the two-qubit Heisenberg XY model. Int. J. Mod. Phys. B 29, 1550098 (2015)ADSMathSciNetCrossRef
78.
Zurück zum Zitat Xie, Y.X., Sun, Y.H., Li, Z.: Controlling measurement-induced nonlocality in the Heisenberg XX model by three-spin interactions. Int. J. Mod. Phys. B 32, 1750268 (2018)ADSMathSciNetMATHCrossRef Xie, Y.X., Sun, Y.H., Li, Z.: Controlling measurement-induced nonlocality in the Heisenberg XX model by three-spin interactions. Int. J. Mod. Phys. B 32, 1750268 (2018)ADSMathSciNetMATHCrossRef
79.
Zurück zum Zitat Li, Z., Xie, Y.X.: Steady-state measurement-induced nonlocality in thermal reservoir. Laser Phys. Lett. 15, 065208 (2018)ADSCrossRef Li, Z., Xie, Y.X.: Steady-state measurement-induced nonlocality in thermal reservoir. Laser Phys. Lett. 15, 065208 (2018)ADSCrossRef
80.
Zurück zum Zitat Xie, Y.X., Gao, Y.Y.: Nonlocal advantage of quantum coherence in the Heisenberg XY model. Laser Phys. Lett. 16, 045202 (2019)ADSCrossRef Xie, Y.X., Gao, Y.Y.: Nonlocal advantage of quantum coherence in the Heisenberg XY model. Laser Phys. Lett. 16, 045202 (2019)ADSCrossRef
81.
Zurück zum Zitat Xie, Y.X., Gao, Y.Y.: Impurity-assisted control of the nonlocal advantage of quantum coherence in the Heisenberg model. Laser Phys. Lett. 16, 075201 (2019)ADSCrossRef Xie, Y.X., Gao, Y.Y.: Impurity-assisted control of the nonlocal advantage of quantum coherence in the Heisenberg model. Laser Phys. Lett. 16, 075201 (2019)ADSCrossRef
82.
Zurück zum Zitat Hu, M.L., Gao, Y.Y., Fan, H.: Steered quantum coherence as a signature of quantum phase transitions in spin chains. Phys. Rev. A 101, 032305 (2020)ADSMathSciNetCrossRef Hu, M.L., Gao, Y.Y., Fan, H.: Steered quantum coherence as a signature of quantum phase transitions in spin chains. Phys. Rev. A 101, 032305 (2020)ADSMathSciNetCrossRef
83.
84.
Zurück zum Zitat O’Connor, K.M., Wootters, W.K.: Entangled rings. Phys. Rev. A 63, 052302 (2002)ADSCrossRef O’Connor, K.M., Wootters, W.K.: Entangled rings. Phys. Rev. A 63, 052302 (2002)ADSCrossRef
86.
Zurück zum Zitat Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSMATHCrossRef Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSMATHCrossRef
88.
Zurück zum Zitat Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)ADSMATHCrossRef Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)ADSMATHCrossRef
Metadaten
Titel
Nonlocal advantage of quantum coherence and quantum discord versus internal energy in the Heisenberg chain
verfasst von
Yu-Xia Xie
Xiao-Xiao Xu
Publikationsdatum
01.07.2021
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 7/2021
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03190-1

Weitere Artikel der Ausgabe 7/2021

Quantum Information Processing 7/2021 Zur Ausgabe