Skip to main content
Erschienen in: Strength of Materials 5/2015

01.09.2015

Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Materials

verfasst von: H. Haeri, A. Khaloo, M. F. Marji

Erschienen in: Strength of Materials | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rocks and rock-like materials frequently fail under compression due to the initiation, propagation and coalescence of the pre-existing microcracks. The mechanism of microcrack coalescence process in rock-like materials is experimentally and numerically investigated. The experimental study involves some uniaxial compression tests on rock-like specimens specially prepared from portland pozzolana cement, mica sheets and water. The microcrack coalescence is studied by scanning electron microscopy on some of the prepared thin specimens. It is assumed that the mica sheets play the role of microcracks within the specimens. Some analytical and numerical studies are also carried out to simulate the experimentally observed microcrack coalescence phenomena within the specimens. A higher-order indirect boundary element method known as higher-order displacement discontinuity method implementing special crack tip elements to treat the singularities of stress and displacement fields near the crack ends is used to estimate the Mode I and Mode II stress intensity factors at the microcrack tips. The maximum tangential stress fracture criterion is implemented in a sophisticated computer code using the linear elastic fracture mechanics theory and the propagation and coalescence of random microcracks within the rock-like specimens are numerically simulated based on an iterative algorithm. The proposed analyses are validated by comparing the corresponding experimental and numerical results of microcrack coalescence phenomena of rock-like materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Bahaaddini, G. Sharrock, and B. K. Hebblewhite, “Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression,” Comput. Geotech., 49, 206–225 (2013).CrossRef M. Bahaaddini, G. Sharrock, and B. K. Hebblewhite, “Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression,” Comput. Geotech., 49, 206–225 (2013).CrossRef
2.
Zurück zum Zitat L. N. Y. Wong and H. Q. Li, “Numerical study on coalescence of two pre-existing coplanar flaws in rock,” Int. J. Solids Struct., 50, 3685–3706 (2013).CrossRef L. N. Y. Wong and H. Q. Li, “Numerical study on coalescence of two pre-existing coplanar flaws in rock,” Int. J. Solids Struct., 50, 3685–3706 (2013).CrossRef
3.
Zurück zum Zitat E. Mohtarami, A. Jafari, and M. Amini, “Stability analysis of slopes against combined circular-toppling failure,” Int. J. Rock Mech. Min. Sci., 67, 43–56 (2014). E. Mohtarami, A. Jafari, and M. Amini, “Stability analysis of slopes against combined circular-toppling failure,” Int. J. Rock Mech. Min. Sci., 67, 43–56 (2014).
4.
Zurück zum Zitat T. Funatsu, M. Kuruppu, and K. Matsui, “Effects of temperature and confining pressure on mixed mode (I–II) and mode II fracture toughness of Kimachi sandstone,” Int. J. Rock Mech. Min. Sci., 67, 1–8 (2014). T. Funatsu, M. Kuruppu, and K. Matsui, “Effects of temperature and confining pressure on mixed mode (I–II) and mode II fracture toughness of Kimachi sandstone,” Int. J. Rock Mech. Min. Sci., 67, 1–8 (2014).
5.
Zurück zum Zitat R. L. Kranz, “Crack-crack and crack-pore interactions in stressed granite,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 16, 37–47 (1979).CrossRef R. L. Kranz, “Crack-crack and crack-pore interactions in stressed granite,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 16, 37–47 (1979).CrossRef
6.
Zurück zum Zitat C. A. Tang, P. Lin, R. H. C. Wong, and K. T. Chau, “Analysis of crack coalescence in rock-like materials containing three flaws – Part II: Numerical approach,” Int. J. Rock Mech. Min. Sci., 38, 925–939 (2001).CrossRef C. A. Tang, P. Lin, R. H. C. Wong, and K. T. Chau, “Analysis of crack coalescence in rock-like materials containing three flaws – Part II: Numerical approach,” Int. J. Rock Mech. Min. Sci., 38, 925–939 (2001).CrossRef
7.
Zurück zum Zitat M. Sagong and A. Bobet, “Coalescence of multiple flaws in a rock-model material in uniaxial compression,” Int. J. Rock Mech. Min. Sci., 39, 229–241 (2002).CrossRef M. Sagong and A. Bobet, “Coalescence of multiple flaws in a rock-model material in uniaxial compression,” Int. J. Rock Mech. Min. Sci., 39, 229–241 (2002).CrossRef
8.
Zurück zum Zitat M. H. B. Nasseri and B. Mohanty, “Fracture toughness anisotropy in granitic rocks,” Int. J. Rock Mech. Min. Sci., 45, 167–193 (2008).CrossRef M. H. B. Nasseri and B. Mohanty, “Fracture toughness anisotropy in granitic rocks,” Int. J. Rock Mech. Min. Sci., 45, 167–193 (2008).CrossRef
9.
Zurück zum Zitat A. Golshani, M. Oda, T. Takemura, and E. Munkhtogoo, “Numerical simulation of the excavation damaged zone around an opening in brittle rock,” Int. J. Rock Mech. Min. Sci., 44, 835–845 (2006).CrossRef A. Golshani, M. Oda, T. Takemura, and E. Munkhtogoo, “Numerical simulation of the excavation damaged zone around an opening in brittle rock,” Int. J. Rock Mech. Min. Sci., 44, 835–845 (2006).CrossRef
10.
Zurück zum Zitat Y. Ichikawa, K. Kawamura, K. Uesugi, et al., “Micro- and macrobehavior of granitic rock: observations and viscoelastic homogenization analysis,” Comput. Meth. Appl. Mech. Eng., 191, 47–72 (2001).CrossRef Y. Ichikawa, K. Kawamura, K. Uesugi, et al., “Micro- and macrobehavior of granitic rock: observations and viscoelastic homogenization analysis,” Comput. Meth. Appl. Mech. Eng., 191, 47–72 (2001).CrossRef
11.
Zurück zum Zitat B. Obara, “Application of the image analysis method to the detection of transcrystalline microcracks observed in microscope images,” Arch. Min. Sci., 50, 537–551 (2005). B. Obara, “Application of the image analysis method to the detection of transcrystalline microcracks observed in microscope images,” Arch. Min. Sci., 50, 537–551 (2005).
12.
Zurück zum Zitat M. F. Marji and E. Dehghani, “Kinked crack analysis by a hybridized boundary element/boundary collocation method,” Int. J. Solids Struct., 47, 922–933 (2010).CrossRef M. F. Marji and E. Dehghani, “Kinked crack analysis by a hybridized boundary element/boundary collocation method,” Int. J. Solids Struct., 47, 922–933 (2010).CrossRef
13.
Zurück zum Zitat M. F. Marji, “Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method,” Int. J. Solids Struct., 51, 1716–1736 (2014).CrossRef M. F. Marji, “Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method,” Int. J. Solids Struct., 51, 1716–1736 (2014).CrossRef
14.
Zurück zum Zitat H. Horii and S. Nemat-Nasser, “Compression-induced microcrack growth in brittle solids: axial splitting and shear failure,” J. Geophys. Res., 90, 3105–3125 (1985).CrossRef H. Horii and S. Nemat-Nasser, “Compression-induced microcrack growth in brittle solids: axial splitting and shear failure,” J. Geophys. Res., 90, 3105–3125 (1985).CrossRef
15.
Zurück zum Zitat B. Shen, O. Stephansson, H. H. Einstein, and B. Ghahreman, “Coalescence of fractures under hear stress experiments,” J. Geoph. Res., 100, 5975–5990 (1995).CrossRef B. Shen, O. Stephansson, H. H. Einstein, and B. Ghahreman, “Coalescence of fractures under hear stress experiments,” J. Geoph. Res., 100, 5975–5990 (1995).CrossRef
16.
Zurück zum Zitat A. Bobet, Fracture Coalescence in Rock Materials: Experimental Observations and Numerical Predictions, Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, USA (1997). A. Bobet, Fracture Coalescence in Rock Materials: Experimental Observations and Numerical Predictions, Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, USA (1997).
17.
Zurück zum Zitat A. Bobet and H. H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998a).CrossRef A. Bobet and H. H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998a).CrossRef
18.
Zurück zum Zitat J. Yoon, “Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation,” Int. J. Rock Mech. Min. Sci., 44, 871–889 (2007).CrossRef J. Yoon, “Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation,” Int. J. Rock Mech. Min. Sci., 44, 871–889 (2007).CrossRef
19.
Zurück zum Zitat C. H. Park, Coalescence of Frictional Fractures in Rock Materials, Ph.D. Thesis, Purdue University, West Lafayette, Indiana (2008). C. H. Park, Coalescence of Frictional Fractures in Rock Materials, Ph.D. Thesis, Purdue University, West Lafayette, Indiana (2008).
20.
Zurück zum Zitat L. N. Y. Wong and H. H. Einstein, “Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression,” Int. J. Rock Mech. Min. Sci., 46, 239–249 (2009).CrossRef L. N. Y. Wong and H. H. Einstein, “Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression,” Int. J. Rock Mech. Min. Sci., 46, 239–249 (2009).CrossRef
21.
Zurück zum Zitat C. H. Park and A. Bobet, “Crack initiation and propagation from frictional fractures,” in: Proc. of the 1st Canada-US Rock Mechanics Symposium (May 27–31, 2007, Vancouver, Canada) (2007), pp. 557–564. C. H. Park and A. Bobet, “Crack initiation and propagation from frictional fractures,” in: Proc. of the 1st Canada-US Rock Mechanics Symposium (May 27–31, 2007, Vancouver, Canada) (2007), pp. 557–564.
22.
Zurück zum Zitat C. H. Park and A. Bobet, “Crack coalescence in specimens with open and closed flaws: A comparison,” Int. J. Rock Mech. Min. Sci., 46, 819–829 (2009).CrossRef C. H. Park and A. Bobet, “Crack coalescence in specimens with open and closed flaws: A comparison,” Int. J. Rock Mech. Min. Sci., 46, 819–829 (2009).CrossRef
23.
Zurück zum Zitat C. H. Park and A. Bobet, “Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression,” Eng. Fract. Mech., 77, 2727–2748 (2010).CrossRef C. H. Park and A. Bobet, “Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression,” Eng. Fract. Mech., 77, 2727–2748 (2010).CrossRef
24.
Zurück zum Zitat H. Lee and S. Jeon, “An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression,” Int. J. Solids Struct., 48, 979–999 (2011).CrossRef H. Lee and S. Jeon, “An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression,” Int. J. Solids Struct., 48, 979–999 (2011).CrossRef
25.
Zurück zum Zitat P. Cheng-zhi and C. Ping, “Failure characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression,” Trans. Nonferrous Met. Soc. China, 22, 185–191 (2012).CrossRef P. Cheng-zhi and C. Ping, “Failure characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression,” Trans. Nonferrous Met. Soc. China, 22, 185–191 (2012).CrossRef
26.
Zurück zum Zitat G. R. Irwin, “Analysis of stresses and strain near the end of crack traversing a plate,” J. Appl. Mech., 24, 361–364 (1957). G. R. Irwin, “Analysis of stresses and strain near the end of crack traversing a plate,” J. Appl. Mech., 24, 361–364 (1957).
27.
Zurück zum Zitat F. Erdogan and G. C. Sih, “On the crack extension in plates under loading and transverse shear,” J. Basic Eng., 85, 519–527 (1963).CrossRef F. Erdogan and G. C. Sih, “On the crack extension in plates under loading and transverse shear,” J. Basic Eng., 85, 519–527 (1963).CrossRef
28.
Zurück zum Zitat M. A. Hussian, E. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560 (1974), pp. 2–28. M. A. Hussian, E. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560 (1974), pp. 2–28.
29.
Zurück zum Zitat G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fract., 10, 305–321 (1974).CrossRef G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fract., 10, 305–321 (1974).CrossRef
30.
Zurück zum Zitat B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation subjected to compression,” Eng. Fract. Mech., 47, 177–189 (1994).CrossRef B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation subjected to compression,” Eng. Fract. Mech., 47, 177–189 (1994).CrossRef
31.
Zurück zum Zitat B. N. Whittaker, R. N. Singh, and G. Sun, Rock Fracture Mechanics: Principles, Design and Applications. Developments in Geotechnical Engineering, Elsevier, Amsterdam (1992). B. N. Whittaker, R. N. Singh, and G. Sun, Rock Fracture Mechanics: Principles, Design and Applications. Developments in Geotechnical Engineering, Elsevier, Amsterdam (1992).
32.
Zurück zum Zitat L. F. Vesga, L. E. Vallejo, and S. Lobo-Guerrero, “DEM analysis of the crack propagation in brittle clays under uniaxial compression tests,” Int. J. Num. Anal. Meth. Geomech., 32, 1405–1415 (2008).CrossRef L. F. Vesga, L. E. Vallejo, and S. Lobo-Guerrero, “DEM analysis of the crack propagation in brittle clays under uniaxial compression tests,” Int. J. Num. Anal. Meth. Geomech., 32, 1405–1415 (2008).CrossRef
33.
Zurück zum Zitat F. Ouchterlony (ISRM Commission on Testing Methods), “Suggested methods for determining the fracture toughness of rock,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25, 71–97 (1988). F. Ouchterlony (ISRM Commission on Testing Methods), “Suggested methods for determining the fracture toughness of rock,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25, 71–97 (1988).
34.
Zurück zum Zitat R. J. Fowell (ISRM Commission on Testing Methods), “Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32, 57–64 (1995). R. J. Fowell (ISRM Commission on Testing Methods), “Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32, 57–64 (1995).
35.
Zurück zum Zitat H. Guo, N. I. Aziz, and R. A. Schmidt, “Linear elastic crack tip modeling by displacement discontinuity method,” Eng. Fract. Mech., 36, 933–943 (1990).CrossRef H. Guo, N. I. Aziz, and R. A. Schmidt, “Linear elastic crack tip modeling by displacement discontinuity method,” Eng. Fract. Mech., 36, 933–943 (1990).CrossRef
36.
Zurück zum Zitat H. Guo, N. I. Aziz, and R. A. Schmidt, “Rock cutting study using linear elastic fracture mechanics,” Eng. Fract. Mech., 41, 771–778 (1992).CrossRef H. Guo, N. I. Aziz, and R. A. Schmidt, “Rock cutting study using linear elastic fracture mechanics,” Eng. Fract. Mech., 41, 771–778 (1992).CrossRef
37.
Zurück zum Zitat C. Scavia, “Fracture mechanics approach to stability analysis of crack slopes,” Eng. Fract. Mech., 35, 889–910 (1990).CrossRef C. Scavia, “Fracture mechanics approach to stability analysis of crack slopes,” Eng. Fract. Mech., 35, 889–910 (1990).CrossRef
38.
Zurück zum Zitat M. H. Aliabadi and D. P. Rooke, Numerical Fracture Mechanics, Computational Mechanics Publications, Southampton, UK (1991). M. H. Aliabadi and D. P. Rooke, Numerical Fracture Mechanics, Computational Mechanics Publications, Southampton, UK (1991).
39.
Zurück zum Zitat M. H. Aliabadi, Fracture of Rocks, Computational Mechanics Publications, Southampton, UK (1998). M. H. Aliabadi, Fracture of Rocks, Computational Mechanics Publications, Southampton, UK (1998).
40.
Zurück zum Zitat H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “On the strength and crack propagation process of the pre-cracked rock-like specimens under uniaxial compression,” Strength Mater., 46, No. 1, 140–152 (2014).CrossRef H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “On the strength and crack propagation process of the pre-cracked rock-like specimens under uniaxial compression,” Strength Mater., 46, No. 1, 140–152 (2014).CrossRef
41.
Zurück zum Zitat R. J. Sanford, Principles of Fracture Mechanics, Pearson Education, Upper Saddle River, New Jersey (2003), pp. 1–15. R. J. Sanford, Principles of Fracture Mechanics, Pearson Education, Upper Saddle River, New Jersey (2003), pp. 1–15.
Metadaten
Titel
Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Materials
verfasst von
H. Haeri
A. Khaloo
M. F. Marji
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 5/2015
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-015-9711-6

Weitere Artikel der Ausgabe 5/2015

Strength of Materials 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.