Skip to main content
Erschienen in: Strength of Materials 2/2017

04.07.2017

Shear Behavior of Non-Persistent Joint Under High Normal Load

verfasst von: V. Sarfarazi, H. Haeri, A. B. Shemirani, Z. Zhu

Erschienen in: Strength of Materials | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the effect of joint separation on the shear behavior of planar non-persistent joints under high normal load has been investigated using PFC2D. Initially calibration of PFC was undertaken with respect to the data obtained from experimental laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models were cross checked with the results of direct shear tests performed on non-persistent jointed physical models. Through numerical direct shear tests, the failure process was visually observed, and the failure patterns were found reasonably similar to the experimentally observed trends. The discrete element simulations demonstrated that the failure pattern was mostly influenced by joint separation, while the shear strength was linked to the failure pattern and failure mechanism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. H. C. Wong and K. T. Chau, “Crack coalescence in rock-like material containing two cracks,” Int. J. Rock Mech. Min. Sci., 35, 147–164 (1998).CrossRef R. H. C. Wong and K. T. Chau, “Crack coalescence in rock-like material containing two cracks,” Int. J. Rock Mech. Min. Sci., 35, 147–164 (1998).CrossRef
2.
Zurück zum Zitat B. Stimpson, “Failure of slopes containing discontinuous planar joints,” in: Proc. of the 19th US Symp. on Rock Mechanics, Stateline, NV (1978), pp. 296–302. B. Stimpson, “Failure of slopes containing discontinuous planar joints,” in: Proc. of the 19th US Symp. on Rock Mechanics, Stateline, NV (1978), pp. 296–302.
3.
Zurück zum Zitat E. Z. Lajtai, “Strength of discontinuous rocks in direct shear,” Geotechnique, 19, 218–233 (1969).CrossRef E. Z. Lajtai, “Strength of discontinuous rocks in direct shear,” Geotechnique, 19, 218–233 (1969).CrossRef
4.
Zurück zum Zitat E. Z. Lajtai, “Shear strength of weakness planes in rock,” Int. J. Rock Mech. Min. Sci., 6, 499–515 (1969).CrossRef E. Z. Lajtai, “Shear strength of weakness planes in rock,” Int. J. Rock Mech. Min. Sci., 6, 499–515 (1969).CrossRef
5.
Zurück zum Zitat T. Savilahti, E. Nordlund, and O. Stephansson, “Shear box testing and modeling of joint bridge,” in: N. Barton and O. Stephansson (Eds.), Rock Joints (Proc. of a Regional Conference of the International Society for Rock Mechanics, June 4–6, 1990, Loen, Norway), Balkema, Rotterdam (1990), pp. 295–300. T. Savilahti, E. Nordlund, and O. Stephansson, “Shear box testing and modeling of joint bridge,” in: N. Barton and O. Stephansson (Eds.), Rock Joints (Proc. of a Regional Conference of the International Society for Rock Mechanics, June 4–6, 1990, Loen, Norway), Balkema, Rotterdam (1990), pp. 295–300.
6.
Zurück zum Zitat R. H. C. Wong, W. L. Leung, and S. W. Wang, “Shear strength study on rock-like models containing arrayed open joints,” in: D. Elsworth, J. P. Tinucci, and K. A. Heasley (Eds.), Rock Mechanics in the National Interest (Proc. of the 38th U.S. Rock Mechanics Symposium, July 7–10, 2001, Washington, D.C.), Swets & Zeitlinger, Lisse, the Netherlands (2001), pp. 843–849. R. H. C. Wong, W. L. Leung, and S. W. Wang, “Shear strength study on rock-like models containing arrayed open joints,” in: D. Elsworth, J. P. Tinucci, and K. A. Heasley (Eds.), Rock Mechanics in the National Interest (Proc. of the 38th U.S. Rock Mechanics Symposium, July 7–10, 2001, Washington, D.C.), Swets & Zeitlinger, Lisse, the Netherlands (2001), pp. 843–849.
7.
Zurück zum Zitat A. Ghazvinian, M. R. Nikudel, and V. Sarfarazi, “Effect of rock bridge continuity and area on shear behavior of joints,” in: Proc. of the 11th ISRM Congress (July 9–13, 2007, Lisbon, Portugal), Document ID: ISRM-11CONGRESS-2007-054 (2007). A. Ghazvinian, M. R. Nikudel, and V. Sarfarazi, “Effect of rock bridge continuity and area on shear behavior of joints,” in: Proc. of the 11th ISRM Congress (July 9–13, 2007, Lisbon, Portugal), Document ID: ISRM-11CONGRESS-2007-054 (2007).
8.
Zurück zum Zitat A. Carpinteri and S. Valente, “Size-scale transition from ductile to brittle failure: a dimensional analysis approach,” in: J. Mazars and Z. P. Baþant (Eds.), Cracking and Damage – Strain Localization and Size Effect (CNRS-NSF Workshop, Sept. 1988, Cachan, France), Elsevier, London (1989), pp. 447–490. A. Carpinteri and S. Valente, “Size-scale transition from ductile to brittle failure: a dimensional analysis approach,” in: J. Mazars and Z. P. Baþant (Eds.), Cracking and Damage – Strain Localization and Size Effect (CNRS-NSF Workshop, Sept. 1988, Cachan, France), Elsevier, London (1989), pp. 447–490.
9.
Zurück zum Zitat O. Mughieda and M. T. Omar, “Stress analysis for rock mass failure with offset joints,” Geotech. Geol. Eng., 26, 543–552 (2008).CrossRef O. Mughieda and M. T. Omar, “Stress analysis for rock mass failure with offset joints,” Geotech. Geol. Eng., 26, 543–552 (2008).CrossRef
10.
Zurück zum Zitat G. E. Blandford, A. R. Ingraffea, and J. A. Ligget, “Two dimensional stress intensity factor computations using the boundary element method,” Int. J. Num. Meth. Eng., 17, 387–401 (1981).CrossRef G. E. Blandford, A. R. Ingraffea, and J. A. Ligget, “Two dimensional stress intensity factor computations using the boundary element method,” Int. J. Num. Meth. Eng., 17, 387–401 (1981).CrossRef
11.
Zurück zum Zitat M. H. Aliabadi and C. A. Brebbia, Advances in Boundary Element Methods for Fracture Mechanics, Elsevier, Amsterdam (1993). M. H. Aliabadi and C. A. Brebbia, Advances in Boundary Element Methods for Fracture Mechanics, Elsevier, Amsterdam (1993).
12.
Zurück zum Zitat N. Altiero and G. Gioda, “An integral equation approach to fracture propagation in rocks,” Riv. Ital. Geotecnica, 16, 55–69 (1982). N. Altiero and G. Gioda, “An integral equation approach to fracture propagation in rocks,” Riv. Ital. Geotecnica, 16, 55–69 (1982).
13.
Zurück zum Zitat M. J. Yang, M. X. Chen, and Y. N. He, “Stochastic FEM analysis of grouting in fracrtured rock mass,” in: H. Xie, Y. Wang, and Y. Jiang (Eds.), Computer Applications in Minerals Industries (Proc. of the 29th Int. Symp., April 25–27, 2001, Beijing, China), Swets & Zeitlinger, Lisse, the Netherlands (2001), pp. 635–638. M. J. Yang, M. X. Chen, and Y. N. He, “Stochastic FEM analysis of grouting in fracrtured rock mass,” in: H. Xie, Y. Wang, and Y. Jiang (Eds.), Computer Applications in Minerals Industries (Proc. of the 29th Int. Symp., April 25–27, 2001, Beijing, China), Swets & Zeitlinger, Lisse, the Netherlands (2001), pp. 635–638.
14.
Zurück zum Zitat S. Zhang, “FEM analysis on mixed-mode fracture of CSM-GRP,” Eng. Fract. Mech., 23, No. 3, 523–535 (1986).CrossRef S. Zhang, “FEM analysis on mixed-mode fracture of CSM-GRP,” Eng. Fract. Mech., 23, No. 3, 523–535 (1986).CrossRef
15.
Zurück zum Zitat H. Kazuo, O. Akihiko, and A. Hiroyuki, “BEM analysis of a cylin-drical three-point bend specimen with a chevron crack for fracture toughness test of rock,” Trans. JSME, 54, 1541–1545 (1988). H. Kazuo, O. Akihiko, and A. Hiroyuki, “BEM analysis of a cylin-drical three-point bend specimen with a chevron crack for fracture toughness test of rock,” Trans. JSME, 54, 1541–1545 (1988).
16.
Zurück zum Zitat B. Shen and O. Stephansson, “Modification of the G-criterion for fracture propagation subjected to compression,” Eng. Fract. Mech., 47, No. 2, 177–189 (1994).CrossRef B. Shen and O. Stephansson, “Modification of the G-criterion for fracture propagation subjected to compression,” Eng. Fract. Mech., 47, No. 2, 177–189 (1994).CrossRef
17.
Zurück zum Zitat B. Vasarhelyi and A. Bobet, “Modeling of crack initiation, propagation and coalescence in uniaxial compression,” Rock Mech. Rock Eng., 33, No. 2, 119–139 (2000).CrossRef B. Vasarhelyi and A. Bobet, “Modeling of crack initiation, propagation and coalescence in uniaxial compression,” Rock Mech. Rock Eng., 33, No. 2, 119–139 (2000).CrossRef
18.
Zurück zum Zitat F. Erdogan and G. C. Sih, “On the crack extension path in plates under plane loading and transverse shear,” J. Basic Eng.-T. ASME, 85, 519–527 (1963).CrossRef F. Erdogan and G. C. Sih, “On the crack extension path in plates under plane loading and transverse shear,” J. Basic Eng.-T. ASME, 85, 519–527 (1963).CrossRef
19.
Zurück zum Zitat M. A. Hussain, S. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560, Philadelphia, PA (1974), pp. 2–28. M. A. Hussain, S. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560, Philadelphia, PA (1974), pp. 2–28.
20.
Zurück zum Zitat G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fracture, 10, 305–321 (1974).CrossRef G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fracture, 10, 305–321 (1974).CrossRef
21.
Zurück zum Zitat H. Lee and S. Jeon, “An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression,” Int. J. Solids Struct., 48, No. 6, 979–999 (2011).CrossRef H. Lee and S. Jeon, “An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression,” Int. J. Solids Struct., 48, No. 6, 979–999 (2011).CrossRef
22.
Zurück zum Zitat A. Ghazvinian, V. Sarfarazi, W. Schubert, and M. Blumel, “A study of the failure mechanism of planar non-persistent open joints using PFC2D,” Rock Mech. Rock Eng., 45, No. 5, 677–693 (2012). A. Ghazvinian, V. Sarfarazi, W. Schubert, and M. Blumel, “A study of the failure mechanism of planar non-persistent open joints using PFC2D,” Rock Mech. Rock Eng., 45, No. 5, 677–693 (2012).
23.
Zurück zum Zitat A. Manouchehrian, M. Sharifzadeh, M. F. Marji, and J. Gholamnejad, “A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression,” Arch. Civ. Mech. Eng., 14, 40–52 (2014).CrossRef A. Manouchehrian, M. Sharifzadeh, M. F. Marji, and J. Gholamnejad, “A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression,” Arch. Civ. Mech. Eng., 14, 40–52 (2014).CrossRef
24.
Zurück zum Zitat X. Zhang and L. N. Y. Wong, “Cracking process in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded- particle model approach,” Rock Mech. Rock Eng., 45, No. 5, 711–737 (2012). X. Zhang and L. N. Y. Wong, “Cracking process in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded- particle model approach,” Rock Mech. Rock Eng., 45, No. 5, 711–737 (2012).
25.
Zurück zum Zitat X. Zhang and L. N. Y. Wong, “Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle, model approach,” Rock Mech. Rock Eng., 46, No. 5, 1001–1021 (2013).CrossRef X. Zhang and L. N. Y. Wong, “Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle, model approach,” Rock Mech. Rock Eng., 46, No. 5, 1001–1021 (2013).CrossRef
26.
Zurück zum Zitat S. Q. Yang, Y. H. Huang, H. W. Jing, and X. R. Liu, “Discrete element modeling on fracture coalescence behaviour of red sandstone containing two unparallel fissures under uniaxial compression,” Eng. Geol., 178, 28–48 (2014).CrossRef S. Q. Yang, Y. H. Huang, H. W. Jing, and X. R. Liu, “Discrete element modeling on fracture coalescence behaviour of red sandstone containing two unparallel fissures under uniaxial compression,” Eng. Geol., 178, 28–48 (2014).CrossRef
27.
Zurück zum Zitat V. Sarfarazi, A. Ghazvinian, W. Schubert, et al., “Numerical simulation of the process of fracture of echelon rock joints,” Rock Mech. Rock Eng., 47, No. 4, 1355–1371 (2014).CrossRef V. Sarfarazi, A. Ghazvinian, W. Schubert, et al., “Numerical simulation of the process of fracture of echelon rock joints,” Rock Mech. Rock Eng., 47, No. 4, 1355–1371 (2014).CrossRef
28.
Zurück zum Zitat Particle Flow Code in 2-Dimensions (PFC2D), Version 3.10, Itasca Consulting Group Inc., Minneapolis, MN (2004). Particle Flow Code in 2-Dimensions (PFC2D), Version 3.10, Itasca Consulting Group Inc., Minneapolis, MN (2004).
29.
Zurück zum Zitat P. Cundall, “A computer model for simulating progressive large scale movements in blocky rock systems,” in: Proc. of the Symp. of International Society of Rock Mechanics, Vol. 1, Paper No. II-8, Nancy, France (1971). P. Cundall, “A computer model for simulating progressive large scale movements in blocky rock systems,” in: Proc. of the Symp. of International Society of Rock Mechanics, Vol. 1, Paper No. II-8, Nancy, France (1971).
30.
Zurück zum Zitat D. O. Potyondy and P. A. Cundall, “A bonded-particle model for rock,” Int. J. Rock Mech. Min. Sci., 41, No. 8, 1329–1364 (2004).CrossRef D. O. Potyondy and P. A. Cundall, “A bonded-particle model for rock,” Int. J. Rock Mech. Min. Sci., 41, No. 8, 1329–1364 (2004).CrossRef
Metadaten
Titel
Shear Behavior of Non-Persistent Joint Under High Normal Load
verfasst von
V. Sarfarazi
H. Haeri
A. B. Shemirani
Z. Zhu
Publikationsdatum
04.07.2017
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2017
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-017-9872-6

Weitere Artikel der Ausgabe 2/2017

Strength of Materials 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.