Skip to main content
Erschienen in: The Journal of Supercomputing 16/2022

26.05.2022

Deep convolutional neural networks for bias field correction of brain magnetic resonance images

verfasst von: Yan Xu, Yuwen Wang, Shunbo Hu, Yuyue Du

Erschienen in: The Journal of Supercomputing | Ausgabe 16/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a low-frequency and smooth signal, the bias field has a certain destructive effect on magnetic resonance (MR) images and is the main obstacle for doctors' diagnosis and image processing (such as segmentation, texture analysis, and registration). Before analyzing a damaged MR image, a preprocessing step is required to correct the bias field in the image. Unlike traditional bias field removal algorithms based on signal models and a priori assumptions, deep learning methods do not require precisely modeling signals and bias fields and do not need to adjust parameters. An MR image with the bias field is input and the corrected MR image is output after the deep neural network being trained on a large training set. In this paper, we propose taking the original image and the local feature images of the bias field in multiple frequency bands obtained by a Log-Gabor filter bank as input, correcting the bias field of a brain MR image through a deep separable convolutional neural network. Meanwhile, to speed up the training process and improve bias correction performance, we apply residual learning and batch normalization. We conducted the same test on BrainWeb simulation database and Human Connectome Project real data set, the consistency of qualitative and quantitative evaluation shows that our training model demonstrates better performance than the traditional state-of-the-art N4 and non-iterative multi-scale (NIMS) methods. Especially for the images with high-intensity non-uniformity level, the bias field has been well corrected.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sekar J, Aruchamy P, Sulaima Lebbe Abdul H, et al (2021). An efficient clinical support system for heart disease prediction using TANFIS classifier. Comput Intell, pp1–31 Sekar J, Aruchamy P, Sulaima Lebbe Abdul H, et al (2021). An efficient clinical support system for heart disease prediction using TANFIS classifier. Comput Intell, pp1–31
2.
Zurück zum Zitat Jayachitra S, Prasanth A (2021) Multi-feature analysis for automated brain stroke classification using weighted Gaussian Naïve Bayes classifier. J Circuits Syst Comput 30(10):2150178CrossRef Jayachitra S, Prasanth A (2021) Multi-feature analysis for automated brain stroke classification using weighted Gaussian Naïve Bayes classifier. J Circuits Syst Comput 30(10):2150178CrossRef
3.
Zurück zum Zitat Hou Z (2006) A Review on MR Image Intensity Inhomogeneity Correction. Int J Biomed Imaging 2006(1):49515 Hou Z (2006) A Review on MR Image Intensity Inhomogeneity Correction. Int J Biomed Imaging 2006(1):49515
4.
Zurück zum Zitat Wicks D, Barker GJ, Tofts PS (1993) Correction of intensity nonuniformity in MR images of any orientation. Magn Reson Imaging 11(2):183–196CrossRef Wicks D, Barker GJ, Tofts PS (1993) Correction of intensity nonuniformity in MR images of any orientation. Magn Reson Imaging 11(2):183–196CrossRef
5.
Zurück zum Zitat Condon BR, Patterson J, Wyper D et al (1987) Image non-uniformity in magnetic resonance imaging: its magnitude and methods for its correction. Br J Radiol 60(709):83–87CrossRef Condon BR, Patterson J, Wyper D et al (1987) Image non-uniformity in magnetic resonance imaging: its magnitude and methods for its correction. Br J Radiol 60(709):83–87CrossRef
6.
Zurück zum Zitat Li X, Li L, Lu H, Liang Z (2005) Partial volume segmentation of brain magnetic resonance images based on maximum a posteriori probability. Med Phys 32(7):2337–2345CrossRef Li X, Li L, Lu H, Liang Z (2005) Partial volume segmentation of brain magnetic resonance images based on maximum a posteriori probability. Med Phys 32(7):2337–2345CrossRef
7.
Zurück zum Zitat Vovk U, Pernu F, Likar BT (2004) MRI intensity inhomogeneity correction by combining intensity and spatial information. Phys Med Biol 49(17):4119–4133CrossRef Vovk U, Pernu F, Likar BT (2004) MRI intensity inhomogeneity correction by combining intensity and spatial information. Phys Med Biol 49(17):4119–4133CrossRef
8.
Zurück zum Zitat Collewet G, Davenel A, Toussaint C, Akoka S (2002) Correction of intensity nonuniformity in spin-echo t 1-weighted images. Magn Reson Imaging 20(4):365–373CrossRef Collewet G, Davenel A, Toussaint C, Akoka S (2002) Correction of intensity nonuniformity in spin-echo t 1-weighted images. Magn Reson Imaging 20(4):365–373CrossRef
9.
Zurück zum Zitat Brey WW, Narayana PA (1988) Correction for intensity falloff in surface coil magnetic resonance imaging. Med Phys 15(2):241–245CrossRef Brey WW, Narayana PA (1988) Correction for intensity falloff in surface coil magnetic resonance imaging. Med Phys 15(2):241–245CrossRef
10.
Zurück zum Zitat Narayana P, Brey W, Kulkarni M, Sievenpiper C (1988) Compensation for surface coil sensitivity variation in magnetic resonance imaging. Magn Reson Imaging 6(3):271–274CrossRef Narayana P, Brey W, Kulkarni M, Sievenpiper C (1988) Compensation for surface coil sensitivity variation in magnetic resonance imaging. Magn Reson Imaging 6(3):271–274CrossRef
11.
Zurück zum Zitat Shuang S, Zheng Y, He Y (2017) A review of methods for bias correction in medical images, 1(1):1–10 Shuang S, Zheng Y, He Y (2017) A review of methods for bias correction in medical images, 1(1):1–10
12.
Zurück zum Zitat Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26(3):405–421CrossRef Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26(3):405–421CrossRef
13.
Zurück zum Zitat Li Y, Wang Z, Zhu YS (2003) Inhomogeneity correction of magnetic resonance images. J Shanghai Jiaotong Univ (Chin Ed) 37(9):1452–1455 Li Y, Wang Z, Zhu YS (2003) Inhomogeneity correction of magnetic resonance images. J Shanghai Jiaotong Univ (Chin Ed) 37(9):1452–1455
14.
Zurück zum Zitat Styner M, Brechbuhler C, Szckely G, Gerig G (2000) Parametric estimate of intensity inhomogeneities applied to MRI. IEEE Trans Med Imaging 19(3):153–165CrossRef Styner M, Brechbuhler C, Szckely G, Gerig G (2000) Parametric estimate of intensity inhomogeneities applied to MRI. IEEE Trans Med Imaging 19(3):153–165CrossRef
15.
Zurück zum Zitat Milles J, Zhu YM, Gimenez G, Guttmann CR, Magnin IE (2007) Mri intensity nonuniformity correction using simultaneously spatial and gray-level histogram information. Comput Med Imaging Graph 31(2):81–90CrossRef Milles J, Zhu YM, Gimenez G, Guttmann CR, Magnin IE (2007) Mri intensity nonuniformity correction using simultaneously spatial and gray-level histogram information. Comput Med Imaging Graph 31(2):81–90CrossRef
16.
Zurück zum Zitat Zhao X, Xie H, Li W, et al (2017) MRI intensity inhomogeneity correction based on similar points. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp 1–6 Zhao X, Xie H, Li W, et al (2017) MRI intensity inhomogeneity correction based on similar points. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp 1–6
17.
Zurück zum Zitat Li C, Gore JC, Davatzikos C (2014) Multiplicative intrinsic component optimization (mico) for MRI bias field estimation and tissue segmentation. Magn Reson Imaging 32(7):913–923CrossRef Li C, Gore JC, Davatzikos C (2014) Multiplicative intrinsic component optimization (mico) for MRI bias field estimation and tissue segmentation. Magn Reson Imaging 32(7):913–923CrossRef
18.
Zurück zum Zitat Xie M, Gao J, Zhu C, Zhou Y (2015) A modified method for MRF segmentation and bias correction of MR image with intensity inhomogeneity. Med Biol Eng Compu 53(1):23–35CrossRef Xie M, Gao J, Zhu C, Zhou Y (2015) A modified method for MRF segmentation and bias correction of MR image with intensity inhomogeneity. Med Biol Eng Compu 53(1):23–35CrossRef
19.
Zurück zum Zitat Banerjee A, Maji P (2015) Rough sets and stomped normal distribution for simultaneous segmentation and bias field correction in brain MR images. IEEE Trans Image Process 24(12):5764–5776MathSciNetCrossRefMATH Banerjee A, Maji P (2015) Rough sets and stomped normal distribution for simultaneous segmentation and bias field correction in brain MR images. IEEE Trans Image Process 24(12):5764–5776MathSciNetCrossRefMATH
20.
Zurück zum Zitat Cai Q, Liu H, Zhou S et al (2018) An adaptive-scale active contour model for inhomogeneous image segmentation and bias field estimation. Pattern Recogn 82:79–93CrossRef Cai Q, Liu H, Zhou S et al (2018) An adaptive-scale active contour model for inhomogeneous image segmentation and bias field estimation. Pattern Recogn 82:79–93CrossRef
21.
Zurück zum Zitat George MM, Kalaivani S (2019) Retrospective correction of intensity inhomogeneity with sparsity constraints in transform-domain: application to brain MRI. Magn Reson Imaging 61:207–223CrossRef George MM, Kalaivani S (2019) Retrospective correction of intensity inhomogeneity with sparsity constraints in transform-domain: application to brain MRI. Magn Reson Imaging 61:207–223CrossRef
22.
Zurück zum Zitat Mangin J-F (2000) Entropy minimization for automatic correction of intensity nonuniformity[C]// Mathematical methods in biomedical image analysis, 2000. In: Proceedings. IEEE Workshop on, pp 162–169 Mangin J-F (2000) Entropy minimization for automatic correction of intensity nonuniformity[C]// Mathematical methods in biomedical image analysis, 2000. In: Proceedings. IEEE Workshop on, pp 162–169
23.
Zurück zum Zitat Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97CrossRef Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97CrossRef
24.
Zurück zum Zitat Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320CrossRef Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320CrossRef
25.
Zurück zum Zitat Liu H, Liu S, Guo D et al (2019) Original intensity preserved inhomogeneity correction and segmentation for liver magnetic resonance imaging. Biomed Signal Process Control 47:231–239CrossRef Liu H, Liu S, Guo D et al (2019) Original intensity preserved inhomogeneity correction and segmentation for liver magnetic resonance imaging. Biomed Signal Process Control 47:231–239CrossRef
26.
Zurück zum Zitat George MM, Kalaivani S, Sudhakar MS (2017) A non-iterative multi-scale approach for intensity inhomogeneity correction in MRI. Magn Reson Imaging 42:43–59CrossRef George MM, Kalaivani S, Sudhakar MS (2017) A non-iterative multi-scale approach for intensity inhomogeneity correction in MRI. Magn Reson Imaging 42:43–59CrossRef
27.
Zurück zum Zitat Gu S, Lei Z, Zuo W, et al (2014) Weighted nuclear norm minimization with application to image denoising. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pp 2862–2869 Gu S, Lei Z, Zuo W, et al (2014) Weighted nuclear norm minimization with application to image denoising. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pp 2862–2869
28.
Zurück zum Zitat Han S, Prince JL, Carass A (2020) Inhomogeneity correction in magnetic resonance images using deep image priors. In: International Workshop on Machine Learning in Medical Imaging. Springer, pp 404–413 Han S, Prince JL, Carass A (2020) Inhomogeneity correction in magnetic resonance images using deep image priors. In: International Workshop on Machine Learning in Medical Imaging. Springer, pp 404–413
29.
Zurück zum Zitat Ulyanov D, Vedaldi A, Lempitsky V (2018) Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, pp 9446–9454 Ulyanov D, Vedaldi A, Lempitsky V (2018) Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, pp 9446–9454
30.
Zurück zum Zitat Xiao Z, Guo C, Yu M et al (2002) Application of log Gabor function in the research of human visual system characteristics. Signal Process 18(005):399–402 Xiao Z, Guo C, Yu M et al (2002) Application of log Gabor function in the research of human visual system characteristics. Signal Process 18(005):399–402
31.
Zurück zum Zitat Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A-Opt Image Sci Vis 4(12):2379–2394CrossRef Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A-Opt Image Sci Vis 4(12):2379–2394CrossRef
32.
Zurück zum Zitat KOVESI D P (2006) What are Log-Gabor filters and why ae they good?[EB /OL]. http: ∥www. csse. uwa. edu. au / ~ pk /research /matlabfns /PhaseCongruency /Docs /convexpl. html. KOVESI D P (2006) What are Log-Gabor filters and why ae they good?[EB /OL]. http: ∥www. csse. uwa. edu. au / ~ pk /research /matlabfns /PhaseCongruency /Docs /convexpl. html.
33.
Zurück zum Zitat Chen X (2010) Research on visual feature extraction based on Gabor transform [D]. School of Software, Jilin University, Jilin Chen X (2010) Research on visual feature extraction based on Gabor transform [D]. School of Software, Jilin University, Jilin
34.
Zurück zum Zitat Han C, Hatsukami TS, Yuan C (2001) A multi-scale method for automatic correction of intensity non-uniformity in MR images. J Magn Reson Imaging 13(3):428–436CrossRef Han C, Hatsukami TS, Yuan C (2001) A multi-scale method for automatic correction of intensity non-uniformity in MR images. J Magn Reson Imaging 13(3):428–436CrossRef
35.
Zurück zum Zitat Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
36.
Zurück zum Zitat Kai Z, Zuo W, Chen Y et al (2016) Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26(7):3142–3155MathSciNetMATH Kai Z, Zuo W, Chen Y et al (2016) Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26(7):3142–3155MathSciNetMATH
37.
Zurück zum Zitat Chao D, Chen CL, He K, et al (2014) Learning a deep convolutional network for image super-resolution. In: European Conference on Computer Vision. Springer, Cham, pp 184–199 Chao D, Chen CL, He K, et al (2014) Learning a deep convolutional network for image super-resolution. In: European Conference on Computer Vision. Springer, Cham, pp 184–199
38.
Zurück zum Zitat Pham DL, Prince JL (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18:737–752CrossRef Pham DL, Prince JL (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18:737–752CrossRef
39.
Zurück zum Zitat Shattuck DW, Sandor-Leahy SR, Schaper KA et al (2001) Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5):856–876CrossRef Shattuck DW, Sandor-Leahy SR, Schaper KA et al (2001) Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5):856–876CrossRef
40.
Zurück zum Zitat Gholizadeh-Ansari M, Alirezaie J, Babyn P (2018). Low-dose CT denoising with dilated residual network. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Gholizadeh-Ansari M, Alirezaie J, Babyn P (2018). Low-dose CT denoising with dilated residual network. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
41.
Zurück zum Zitat He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR2016), pp 770–778 He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR2016), pp 770–778
42.
Zurück zum Zitat Xu Y, Hu S, Du Y (2019) Bias correction of multiple MRI images based on an improved nonparametric maximum likelihood method. IEEE Access 7(1):166762–166775CrossRef Xu Y, Hu S, Du Y (2019) Bias correction of multiple MRI images based on an improved nonparametric maximum likelihood method. IEEE Access 7(1):166762–166775CrossRef
43.
Zurück zum Zitat Cocosco CA, Kollokian V, Kwan R et al (1997) Brain web: Online interface to a 3D MRI simulated brain database [J]. Neuroimage 5(4(part 2/4)):425 Cocosco CA, Kollokian V, Kwan R et al (1997) Brain web: Online interface to a 3D MRI simulated brain database [J]. Neuroimage 5(4(part 2/4)):425
44.
Zurück zum Zitat Essen D, Smith SM, Barch DM et al (2013) The WU-Minn human connectome project: an overview. Neuroimage 80(80):62–79CrossRef Essen D, Smith SM, Barch DM et al (2013) The WU-Minn human connectome project: an overview. Neuroimage 80(80):62–79CrossRef
45.
Zurück zum Zitat WU-Minn HCP (2015) 900 Subjects data release: reference manual WU-Minn HCP (2015) 900 Subjects data release: reference manual
46.
Zurück zum Zitat Oktay O, Ferrante E, Kamnitsas K et al (2018) Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging 37(2):384–395CrossRef Oktay O, Ferrante E, Kamnitsas K et al (2018) Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging 37(2):384–395CrossRef
Metadaten
Titel
Deep convolutional neural networks for bias field correction of brain magnetic resonance images
verfasst von
Yan Xu
Yuwen Wang
Shunbo Hu
Yuyue Du
Publikationsdatum
26.05.2022
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 16/2022
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-022-04575-4

Weitere Artikel der Ausgabe 16/2022

The Journal of Supercomputing 16/2022 Zur Ausgabe

Premium Partner