Skip to main content
Erschienen in: Theory and Decision 1/2014

01.06.2014

Additive representation of separable preferences over infinite products

verfasst von: Marcus Pivato

Erschienen in: Theory and Decision | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Let \(\mathcal{X }\) be a set of outcomes, and let \(\mathcal{I }\) be an infinite indexing set. This paper shows that any separable, permutation-invariant preference order \((\succcurlyeq )\) on \(\mathcal{X }^\mathcal{I }\) admits an additive representation. That is: there exists a linearly ordered abelian group \(\mathcal{R }\) and a ‘utility function’ \(u:\mathcal{X }{{\longrightarrow }}\mathcal{R }\) such that, for any \(\mathbf{x},\mathbf{y}\in \mathcal{X }^\mathcal{I }\) which differ in only finitely many coordinates, we have \(\mathbf{x}\succcurlyeq \mathbf{y}\) if and only if \(\sum _{i\in \mathcal{I }} \left[u(x_i)-u(y_i)\right]\ge 0\). Importantly, and unlike almost all previous work on additive representations, this result does not require any Archimedean or continuity condition. If \((\succcurlyeq )\) also satisfies a weak continuity condition, then the paper shows that, for any \(\mathbf{x},\mathbf{y}\in \mathcal{X }^\mathcal{I }\), we have \(\mathbf{x}\succcurlyeq \mathbf{y}\) if and only if \({}^*\!\sum _{i\in \mathcal{I }} u(x_i)\ge {}^*\!\sum _{i\in \mathcal{I }}u(y_i)\). Here, \({}^*\!\sum _{i\in \mathcal{I }} u(x_i)\) represents a nonstandard sum, taking values in a linearly ordered abelian group \({}^*\!\mathcal{R }\), which is an ultrapower extension of \(\mathcal{R }\). The paper also discusses several applications of these results, including infinite-horizon intertemporal choice, choice under uncertainty, variable-population social choice and games with infinite strategy spaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
See Sect. 5 for the formal definition of \({}^*\!\mathbb{R }\). See Anderson (1991) or Goldblatt (1998) for good introductions to nonstandard analysis.
 
2
See, e.g. Krantz et al. (1971, §1.5.2, §6.5.1 and §9.1) and (1990, §21.7), Pfanzagl (1968, §6.6 and §9.5), Narens (1974a), and Fuhrken and Richter (1991).
 
3
See e.g. Sidgwick (1884, Book IV, Chapt. I, §1, p. 411), Ramsey (1928, p. 543) and Rawls (1928, §44, p. 253). Note that ‘instrumental’ time preferences may be ethically defensible, even if ‘pure’ time preferences are not. See Sect. 6 for further discussion of this point.
 
4
It would remain infinite for any exponential discount rate less than 2 % per year.
 
5
Note that I do not assume a probability distribution on \(\mathcal{I }\).
 
6
Thus, the elements of \(\mathcal{X }\) are ‘extended alternatives’, which encode both the specific identity of a person and any ethically relevant information about her physical and mental state.
 
7
That is: for any distinct \(r,s\in \mathcal{R }\), either \(r>s\) or \(s>r\), but not both.
 
8
In Savage’s theory, this property is called the sure thing principle or Axiom P2. In axiomatic measurement theory, it is variously called (joint) independence or single cancellation. In social choice, separability is a special case of the axiom of independence of (or elimination of) indifferent individuals, which in turn is a special case of the Extended Pareto axiom.
 
9
But see Sect. 6.
 
10
Formally, \({}^*\!\mathcal{R }\) is an ultrapower of \(\mathcal{R }\) with respect to an ultrafilter \(\mathfrak{UF }\) defined over the set of all finite subsets of \(\mathcal{I }\). The precise construction of \({}^*\!\mathcal{R }\) is somewhat technical, and will be provided in Sect. 5 below.
 
11
This recalls preference relations which have been proposed by Lauwers and Vallentyne (2004) and Asheim et al. (2010); see Sect. 7.2 for discussion.
 
12
This recalls intertemporal preference relations proposed by Atsumi (1965) and Weizsäcker (1965); again see Sect. 7.2 for discussion.
 
13
But see Sect. 6.
 
14
‘Generalized’ because \(u\) might actually be a monotone increasing transformation of the ‘true’ cardinal utility function of the individuals.
 
15
In different contexts, the Archimedean property has been called continuity or substitutability.
 
16
Of course, if \((\succcurlyeq )\) itself is strictly finitary, then \(\big ( {\stackrel{\displaystyle \succcurlyeq }{{\scriptscriptstyle \mathrm fin}}}\big )\) is \((\succcurlyeq )\).
 
17
In the case \(\mathcal{I }=\mathbb{N }\), Proposition 5(a) is equivalent to Theorem 1.1 of Wakker (1986), which in turn builds on earlier, similar results by Camacho (1979a, b, 1980, 1982). For a similar result, representing separable preferences using utility averages (rather than utility sums), see Kothiyal et al. (2012).
 
18
Technical note (to be read after Sect. 5): The results in this section require a specific—but quite natural—choice of ultrafilter \(\mathfrak{UF }\). Let \(\Pi :=\Pi _{\scriptscriptstyle {\mathrm{fs}}}\) be the group of all fixed-step permutations of \(\mathbb{N }\), from Example 16(c). Then define \(\mathfrak{UF }\) as in Lemma 15. Then use \(\mathfrak{UF }\) to define \({}^*\!\mathcal{R }, {}^*\!\sum \) and \(\big ({}^{^*}\!{ {\stackrel{\displaystyle \succcurlyeq }{{\scriptscriptstyle u}}}}\big )\).
 
19
Technical note (to be read after Sect. 5): Let \({\varvec{\mathcal{F }}}\) be the set of finite subsets of \(\mathcal{I }, \mathfrak{UF }\) be an ultrafilter on \({\varvec{\mathcal{F }}}\), and define \(\mathcal{R }\!:=\!\mathbb{R }^{\varvec{\mathcal{F }}}/\mathfrak{UF }\). Thus, \(\mathcal{R }\) is a hyperreal number field. Now define \({}^*\!\mathcal{R }\!:=\!\mathcal{R }^{\varvec{\mathcal{F }}}/\mathfrak{UF }\). Technically, \({}^*\!\mathcal{R }\) is another a hyperreal number field, but it is distinct from \(\mathcal{R }\). I could have referred to it as \(^{**}\mathbb{R }\), but this seemed like a notation too far.
 
20
The anonymous referee has pointed out that this property was originally introduced by Finetti (1931).
 
21
Strictly speaking, we would need to divide by the normalization factor \({}^*\!\sum _{i\in \mathcal{I }} 1\) for this to be true.
 
22
Here I adopt the usual convention that \(0\cdot \log _2(0):=0\).
 
23
To be somewhat more precise: if \((x_1,x_2,\ldots ,x_N)\) was a long sequence of independent, \(\mu \)-random variables, then, using an optimal encoding scheme, it would take approximately \(N\cdot H(\mu )\) bits to transmit complete information about the sequence \((x_1,x_2,\ldots ,x_N)\). This approximation becomes exact as \(N{\rightarrow }{\infty }\). For more information on entropy and information, see Cover and Thomas (2006).
 
24
It is possible to define, e.g. the entropy of a Borel probability measure on a compact subset of \(\mathbb{R }^N\), but only relative to some ‘baseline’ measure—typically the Lebesgue measure. The baseline measure is then the measure of maximal entropy. But this raises the question: what is the right baseline measure?
 
25
This follows from the construction of \(\mu \) in the proof of Proposition 10.
 
26
Formally, an ultrafilter \(\mathfrak{UF }\) is equivalent to a finitely additive, \(\{0,1\}\)-valued probability measure defined on all subsets of \({\varvec{\mathcal{F }}}\). The elements of \(\mathfrak{UF }\) are the ‘sets of measure 1’, and the elements of \(\mathfrak{P }\setminus \mathfrak{UF }\) are the ‘sets of measure 0’. I mean ‘almost all’ with respect to this probability measure. Just as in classical probability theory, this use of ‘almost all’ is only meaningful with respect to a particular ultrafilter. If \(\mathfrak{UF }\) and \(\mathfrak{UF }'\) are two different ultrafilters, then there will exist a subset \({\varvec{\mathcal{G }}}\subset {\varvec{\mathcal{F }}}\) such that \(\mathfrak{UF }\) judges \({\varvec{\mathcal{G }}}\) to contain ‘almost all’ elements of \({\varvec{\mathcal{F }}}\), while \(\mathfrak{UF }'\) judges \({\varvec{\mathcal{F }}}\setminus {\varvec{\mathcal{G }}}\) to contain ‘almost all’ elements of \({\varvec{\mathcal{F }}}\).
 
27
Proof: \(\big ({ {\stackrel{\displaystyle \succcurlyeq }{{\scriptscriptstyle \mathfrak{UF }}}}}\big )\) is complete by Axiom (UF). Next, \(\big ({ {\stackrel{\displaystyle \succcurlyeq }{{\scriptscriptstyle \mathfrak{UF }}}}}\big )\) is reflexive, because \({\varvec{\mathcal{F }}}\in \mathfrak{UF }\). Finally, \(\big ({ {\stackrel{\displaystyle \succcurlyeq }{{\scriptscriptstyle \mathfrak{UF }}}}}\big )\) is transitive, by Axioms (F1) and (F2).
 
28
Formally, \({}^*\!\mathcal{R }\) is called the ultrapower of \(\mathcal{R }\) modulo the ultrafilter \(\mathfrak{UF }\). It is conventional to denote ultrapower-related objects with the leading star \(*\).
 
29
In fact, Lemma 13 is a special case of Łoś’s theorem, which roughly states that any first-order properties of any system of algebraic structures and/or \(N\)-ary relations on \(\mathcal{R }\) are ‘inherited’ by \({}^*\!\mathcal{R }\). For example, if \(\mathcal{R }\) is a linearly ordered field, then \({}^*\!\mathcal{R }\) will also be a linearly ordered field.
 
30
A positive element of \({}^*\!\mathcal{R }\) is ‘infinitesimal’ if it is smaller than every positive element of \(\mathcal{R }'\). It is ‘infinite’ if it is bigger than every element of \(\mathcal{R }'\).
 
31
For any infinite indexing set \(\mathcal{N }\) and any ultrafilter \(\varvec{\mathcal{U }\!\mathcal{F }}\) on \(\mathcal{N }\), one can obtain a hyperreal number field by taking the ultrapower \(\mathbb{R }^\mathcal{N }/\varvec{\mathcal{U }\!\mathcal{F }}\). Technically, different choices of \(\mathcal{N }\) and/or \(\varvec{\mathcal{U }\!\mathcal{F }}\) will lead to different fields, so it is somewhat inaccurate to speak of ‘the’ hyperreal number field \({}^*\!\mathbb{R }\) as if it was a single object. However, all of these fields satisfy the axioms of nonstandard analysis (e.g. they are non-Archimedean linearly ordered field extensions of the field \(\mathbb{R }\) of real numbers), hence they can be treated as ‘the same’ object for most purposes.
 
32
That is: \({\left\langle \Delta \right\rangle }:= \{\delta _1^{n_1}\cdot \delta _2^{n_2}\cdots \delta _k^{n_k}\); \(k\in \mathbb{N }\), \(\delta _1,\ldots ,\delta _k\in \Delta \), and \(n_1,\ldots ,n_k\in \mathbb{Z }\}\).
 
33
Basu and Mitra (2007a) show that a permutation group \(\Gamma \subset \Pi \) can be the symmetry group of some Paretian social welfare relation on \(\mathbb{R }^\mathbb{N }\) if and only if each single element of \(\Gamma \) has finite orbits. The condition of locally finite orbits is similar, but somewhat more restrictive.
 
34
\(\Pi _{\scriptscriptstyle {\mathrm{fs}}}\)-invariant social welfare relations on \(\mathbb{R }^\mathbb{N }\) have been considered by Lauwers (1997), Fleurbaey and Michel (2003; §4.2) and Basu and Mitra (2007a; §5).
 
35
Lauwers (1998); Basu and Mitra (2003, 2007a, b), Fleurbaey and Michel (2003; Thm. 1) and Sakai (2010; Thm.2) have analyzed this Pareto/anonymity conflict in greater detail. Seidenfeld et al. (2009) have observed an analogous conflict between permutation-invariance and the statewise dominance principle, in the setting of risky decisions.
 
36
Standardization maps all infinite hyperreals to \(\pm {\infty }\), and strips the infinitesimal part away from all finite hyperreals, leaving only the real part.
 
37
Of course, individuals can still derive (dis)utility from memory of the past, anticipation of the future, altruism/envy towards other people or the contingency of fate, as long as the relevant cognitive states are explicitly encoded in \(\mathcal{X }\).
 
38
Of particular note is Jaffray (1974b), which gives necessary and sufficient conditions for real-valued additive representations in full generality, without the use of a continuity or solvability condition.
 
39
Wakker (1986) built on Camacho’s (1979a, b, 1980, 1982) earlier theory of additive preferences over the space of arbitrary-length finite sequences in \(\mathcal{X }\). Later, Wakker and Zank (1999) developed another additive representation for infinite Cartesian powers, using measure theory. Meanwhile, Streufert (1995) has analyzed the separability structure of partially separable (but not necessarily additive) preferences on infinite Cartesian products.
 
40
See also Chipman (1971). In fact, this result had earlier been proved independently in papers by Sierpiński, Cuesta and Mendelson; see Fishburn (1974; §5) for details. Starting from Chipman’s work, Herden and Mehta (2004) have developed continuous lexicographical ordinal utility functions.
 
41
Nonstandard analysis also has other applications in economics, unrelated to the topic of this paper; see e.g. see Anderson (1991) and Stigum (1990).
 
42
See footnote 19.
 
43
Condition (i) is because \(r\) is finite. Condition (ii) ensures uniqueness by excluding binary expansions ending in an infinite sequence of \(1\)’s.
 
Literatur
Zurück zum Zitat Anderson, R. M. (1991). Nonstandard analysis with applications to economics. In Handbook of mathematical economics (Vol. IV, pp. 2145–2208). Amsterdam: North-Holland. Anderson, R. M. (1991). Nonstandard analysis with applications to economics. In Handbook of mathematical economics (Vol. IV, pp. 2145–2208). Amsterdam: North-Holland.
Zurück zum Zitat Arrow, K. J., Sen, A. K., & Suzumura, K. (Eds.). (2002). Handbook of social choice and welfare (Vol. I). Amsterdam: North-Holland. Arrow, K. J., Sen, A. K., & Suzumura, K. (Eds.). (2002). Handbook of social choice and welfare (Vol. I). Amsterdam: North-Holland.
Zurück zum Zitat Asheim, G. B., d’Aspremont, C., & Banerjee, K. (2010). Generalized time-invariant overtaking. Journal of Mathematical Economics, 46(4), 519–533.CrossRef Asheim, G. B., d’Aspremont, C., & Banerjee, K. (2010). Generalized time-invariant overtaking. Journal of Mathematical Economics, 46(4), 519–533.CrossRef
Zurück zum Zitat Asheim, G. B., & Tungodden, B. (2004). Resolving distributional conflicts between generations. Economic Theory, 24(1), 221–230.CrossRef Asheim, G. B., & Tungodden, B. (2004). Resolving distributional conflicts between generations. Economic Theory, 24(1), 221–230.CrossRef
Zurück zum Zitat Atsumi, H. (1965). Neoclassical growth and the efficient program of capital accumulation. Review of Economic Studies, 32, 127–136.CrossRef Atsumi, H. (1965). Neoclassical growth and the efficient program of capital accumulation. Review of Economic Studies, 32, 127–136.CrossRef
Zurück zum Zitat Banerjee, K. (2006). On the extension of the utilitarian and Suppes-Sen social welfare relations to infinite utility streams. Social Choice and Welfare, 27(2), 327–339.CrossRef Banerjee, K. (2006). On the extension of the utilitarian and Suppes-Sen social welfare relations to infinite utility streams. Social Choice and Welfare, 27(2), 327–339.CrossRef
Zurück zum Zitat Basu, K., & Mitra, T. (2003). Aggregating infinite utility streams with intergenerational equity: The impossibility of being Paretian. Econometrica, 71(5), 1557–1563.CrossRef Basu, K., & Mitra, T. (2003). Aggregating infinite utility streams with intergenerational equity: The impossibility of being Paretian. Econometrica, 71(5), 1557–1563.CrossRef
Zurück zum Zitat Basu, K., & Mitra, T. (2007a). On the existence of Paretian social welfare relations for infinite utility streams with extended anonymity. In J. Roemer & J. Suzumura (Eds.), Intergenerational equity and sustainability: Conference proceedings of the IWEA roundtable meeting on intergenerational equity (Palgrave) (pp. 85–100). Basu, K., & Mitra, T. (2007a). On the existence of Paretian social welfare relations for infinite utility streams with extended anonymity. In J. Roemer & J. Suzumura (Eds.), Intergenerational equity and sustainability: Conference proceedings of the IWEA roundtable meeting on intergenerational equity (Palgrave) (pp. 85–100).
Zurück zum Zitat Basu, K., & Mitra, T. (2007b). Possibility theorems for aggregating infinite utility streams equitably. In J. Roemer & K. Suzumura (Eds.), Intergenerational equity and sustainability: Conference proceedings of the IWEA roundtable meeting on intergenerational equity (Palgrave) (pp. 69–84). Basu, K., & Mitra, T. (2007b). Possibility theorems for aggregating infinite utility streams equitably. In J. Roemer & K. Suzumura (Eds.), Intergenerational equity and sustainability: Conference proceedings of the IWEA roundtable meeting on intergenerational equity (Palgrave) (pp. 69–84).
Zurück zum Zitat Basu, K., & Mitra, T. (2007c). Utilitarianism for infinite utility streams: A new welfare criterion and its axiomatic characterization. The Journal of Economic Theory, 133(1), 350–373.CrossRef Basu, K., & Mitra, T. (2007c). Utilitarianism for infinite utility streams: A new welfare criterion and its axiomatic characterization. The Journal of Economic Theory, 133(1), 350–373.CrossRef
Zurück zum Zitat Benci, V., Horsten, L., & Wenmackers, S. (2012). Axioms for non-archimedean probability. In J. De Vuyst & L. Demey (Eds.), Future directions for logic; Proceedings of PhDs in Logic III (Vol. 2, pp. 127–135). London: IfColog Proceedings London, College Publications. Benci, V., Horsten, L., & Wenmackers, S. (2012). Axioms for non-archimedean probability. In J. De Vuyst & L. Demey (Eds.), Future directions for logic; Proceedings of PhDs in Logic III (Vol. 2, pp. 127–135). London: IfColog Proceedings London, College Publications.
Zurück zum Zitat Benci, V., Horsten, L., & Wenmackers, S. (2013, forthcoming). Non-archimedean probability. Milan Journal of Mathematics. Benci, V., Horsten, L., & Wenmackers, S. (2013, forthcoming). Non-archimedean probability. Milan Journal of Mathematics.
Zurück zum Zitat Bernstein, A. R. (1974). A non-standard integration theory for unbounded functions. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 20, 97–108.CrossRef Bernstein, A. R. (1974). A non-standard integration theory for unbounded functions. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 20, 97–108.CrossRef
Zurück zum Zitat Bernstein, A. R., & Wattenberg, F. (1969). Holt. New York: Rinehart and Winston. Bernstein, A. R., & Wattenberg, F. (1969). Holt. New York: Rinehart and Winston.
Zurück zum Zitat Blackorby, C., Bossert, W., & Donaldson, D. (1998). Uncertainty and critical-level population principles. Journal of Population Economics, 11(1), 1–20.CrossRef Blackorby, C., Bossert, W., & Donaldson, D. (1998). Uncertainty and critical-level population principles. Journal of Population Economics, 11(1), 1–20.CrossRef
Zurück zum Zitat Blackorby, C., Bossert, W., & Donaldson, D. (2002). Utilitarianism and the theory of justice. In Arrow, et al. (Eds.), (pp. 543–596). Blackorby, C., Bossert, W., & Donaldson, D. (2002). Utilitarianism and the theory of justice. In Arrow, et al. (Eds.), (pp. 543–596).
Zurück zum Zitat Blackorby, C., Bossert, W., & Donaldson, D. (2005). Population issues in social choice theory, welfare economics, and ethics. Cambridge: Cambridge University Press.CrossRef Blackorby, C., Bossert, W., & Donaldson, D. (2005). Population issues in social choice theory, welfare economics, and ethics. Cambridge: Cambridge University Press.CrossRef
Zurück zum Zitat Blume, L., Brandenburger, A., & Dekel, E. (1989). An overview of lexicographic choice under uncertainty. Annals of Operations Research, 19(1–4), 231–246. Choice under uncertainty. Blume, L., Brandenburger, A., & Dekel, E. (1989). An overview of lexicographic choice under uncertainty. Annals of Operations Research, 19(1–4), 231–246. Choice under uncertainty.
Zurück zum Zitat Blume, L., Brandenburger, A., & Dekel, E. (1991a). Lexicographic probabilities and choice under uncertainty. Econometrica, 59(1), 61–79.CrossRef Blume, L., Brandenburger, A., & Dekel, E. (1991a). Lexicographic probabilities and choice under uncertainty. Econometrica, 59(1), 61–79.CrossRef
Zurück zum Zitat Blume, L., Brandenburger, A., & Dekel, E. (1991b). Lexicographic probabilities and equilibrium refinements. Econometrica, 59(1), 81–98.CrossRef Blume, L., Brandenburger, A., & Dekel, E. (1991b). Lexicographic probabilities and equilibrium refinements. Econometrica, 59(1), 81–98.CrossRef
Zurück zum Zitat Camacho, A. (1979a). Maximizing expected utility and the rule of long run success. In M. Allais & O. Hagen (Eds.), Expected utility and the allais paradox. Dordrecht: D. Reidel. Camacho, A. (1979a). Maximizing expected utility and the rule of long run success. In M. Allais & O. Hagen (Eds.), Expected utility and the allais paradox. Dordrecht: D. Reidel.
Zurück zum Zitat Camacho, A. (1979b). On cardinal utility. Theory and Decision, 10(1–4), 131–145. Methodological developments in social sciences.CrossRef Camacho, A. (1979b). On cardinal utility. Theory and Decision, 10(1–4), 131–145. Methodological developments in social sciences.CrossRef
Zurück zum Zitat Camacho, A. (1980). Approaches to cardinal utility. Theory and Decision, 12(4), 359–379.CrossRef Camacho, A. (1980). Approaches to cardinal utility. Theory and Decision, 12(4), 359–379.CrossRef
Zurück zum Zitat Camacho, A. (1982). Societies and social decision functions. Dordrecht: D. Reidel.CrossRef Camacho, A. (1982). Societies and social decision functions. Dordrecht: D. Reidel.CrossRef
Zurück zum Zitat Chipman, J. S. (1960). The foundations of utility. Econometrica, 28, 193–224.CrossRef Chipman, J. S. (1960). The foundations of utility. Econometrica, 28, 193–224.CrossRef
Zurück zum Zitat Chipman, J. S. (1971). On the lexicographic representation of preference orderings. In Preferences, utility and demand (a Minnesota Symposium) (pp. 276–288). New York: Harcourt Brace Jovanovich. Chipman, J. S. (1971). On the lexicographic representation of preference orderings. In Preferences, utility and demand (a Minnesota Symposium) (pp. 276–288). New York: Harcourt Brace Jovanovich.
Zurück zum Zitat Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Hoboken, NJ: Wiley. Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Hoboken, NJ: Wiley.
Zurück zum Zitat de Finetti, B. (1931). Sul significato soggettivo della probabilitá. Fundamenta Mathematicae, 17, 298–329. (trans. into English as On the subjective meaning of probability, in de Finetti, 1993). de Finetti, B. (1931). Sul significato soggettivo della probabilitá. Fundamenta Mathematicae, 17, 298–329. (trans. into English as On the subjective meaning of probability, in de Finetti, 1993).
Zurück zum Zitat de Finetti, B. (1993). Probabilità e induzione. In P. Monari & D. Cocch (Eds.), (2nd ed., Vol. 5, supplement of Statistica). Bologna: Cooperativa Libraria Universitaria Editrice Bologna (trans. by M. Khale). de Finetti, B. (1993). Probabilità e induzione. In P. Monari & D. Cocch (Eds.), (2nd ed., Vol. 5, supplement of Statistica). Bologna: Cooperativa Libraria Universitaria Editrice Bologna (trans. by M. Khale).
Zurück zum Zitat Debreu, G. (1960). Topological methods in cardinal utility theory. In Mathematical methods in the social sciences (pp. 16–26). Stanford, CA: Stanford University Press. Debreu, G. (1960). Topological methods in cardinal utility theory. In Mathematical methods in the social sciences (pp. 16–26). Stanford, CA: Stanford University Press.
Zurück zum Zitat Fishburn, P. (1999). Preference structures and their numerical representations. Theoretical Computer Science, 217(2), 359–383. oRDAL ’96 (Ottawa, ON). Fishburn, P. (1999). Preference structures and their numerical representations. Theoretical Computer Science, 217(2), 359–383. oRDAL ’96 (Ottawa, ON).
Zurück zum Zitat Fishburn, P. C. (1974). Lexicographic orders, utilities and decision rules: A survey. Management Science, 20, 1442–1471.CrossRef Fishburn, P. C. (1974). Lexicographic orders, utilities and decision rules: A survey. Management Science, 20, 1442–1471.CrossRef
Zurück zum Zitat Fishburn, P. C. (1982). The foundations of expected utility. In Theory and decision library (Vol. 31). Dordrech: D. Reide. Fishburn, P. C. (1982). The foundations of expected utility. In Theory and decision library (Vol. 31). Dordrech: D. Reide.
Zurück zum Zitat Fishburn, P. C., & LaValle, I. H. (1998). Subjective expected lexicographic utility: Axioms and assessment. Annals of Operations Research, 80, 183–206.CrossRef Fishburn, P. C., & LaValle, I. H. (1998). Subjective expected lexicographic utility: Axioms and assessment. Annals of Operations Research, 80, 183–206.CrossRef
Zurück zum Zitat Fleming, M. (1952). A cardinal concept of welfare. Quarterly Journal of Economics, 66(3), 284–366.CrossRef Fleming, M. (1952). A cardinal concept of welfare. Quarterly Journal of Economics, 66(3), 284–366.CrossRef
Zurück zum Zitat Fleurbaey, M., & Michel, P. (2003). Intertemporal equity and the extension of the Ramsey criterion. Journal of Mathematical Economics, 39(7), 777–802.CrossRef Fleurbaey, M., & Michel, P. (2003). Intertemporal equity and the extension of the Ramsey criterion. Journal of Mathematical Economics, 39(7), 777–802.CrossRef
Zurück zum Zitat Fuhrken, G., & Richter, M. K. (1991). Additive utility. Economic Theory, 1(1), 83–105.CrossRef Fuhrken, G., & Richter, M. K. (1991). Additive utility. Economic Theory, 1(1), 83–105.CrossRef
Zurück zum Zitat Goldblatt, R. (1998). Lectures on the hyperreals. In Graduate texts in mathematics (Vol. 188). New York: Springer. Goldblatt, R. (1998). Lectures on the hyperreals. In Graduate texts in mathematics (Vol. 188). New York: Springer.
Zurück zum Zitat Gorman, W. (1968). The structure of utility functions. Review of Economic Studies, 35(390), 367.CrossRef Gorman, W. (1968). The structure of utility functions. Review of Economic Studies, 35(390), 367.CrossRef
Zurück zum Zitat Gravett, K. A. H. (1956). Ordered abelian groups. Quarterly Journal of Mathematics: Oxford Series, 7(2), 57–63.CrossRef Gravett, K. A. H. (1956). Ordered abelian groups. Quarterly Journal of Mathematics: Oxford Series, 7(2), 57–63.CrossRef
Zurück zum Zitat Halpern, J. Y. (2009). A nonstandard characterization of sequential equilibrium, perfect equilibrium, and proper equilibrium. International Journal of Game Theory, 38(1), 37–49.CrossRef Halpern, J. Y. (2009). A nonstandard characterization of sequential equilibrium, perfect equilibrium, and proper equilibrium. International Journal of Game Theory, 38(1), 37–49.CrossRef
Zurück zum Zitat Halpern, J. Y. (2010). Lexicographic probability, conditional probability, and nonstandard probability. Games and Economic Behavior, 68(1), 155–179.CrossRef Halpern, J. Y. (2010). Lexicographic probability, conditional probability, and nonstandard probability. Games and Economic Behavior, 68(1), 155–179.CrossRef
Zurück zum Zitat Hammond, P. (1994). Elementary non-archimedean representations of probability for decision theory and games. In P. Humphreys (Ed.), Patrick Suppes: scientific philosoher (Vol. 1, pp. 25–49). Dordrecht: Kluwer.CrossRef Hammond, P. (1994). Elementary non-archimedean representations of probability for decision theory and games. In P. Humphreys (Ed.), Patrick Suppes: scientific philosoher (Vol. 1, pp. 25–49). Dordrecht: Kluwer.CrossRef
Zurück zum Zitat Hammond, P. (1999). Consequentialism, non-archimedean probabilities, and lexicographic expected utility. In C. Bicchieri, R. Jeffrey, & B. Skyrms (Eds.), The logic of strategy. Oxford: Oxford University Press. Hammond, P. (1999). Consequentialism, non-archimedean probabilities, and lexicographic expected utility. In C. Bicchieri, R. Jeffrey, & B. Skyrms (Eds.), The logic of strategy. Oxford: Oxford University Press.
Zurück zum Zitat Harsanyi, J. (1955). Cardinal welfare, individualistic ethics and interpersonal comparisons of utility. Journal of Political Economy, 63, 309–321.CrossRef Harsanyi, J. (1955). Cardinal welfare, individualistic ethics and interpersonal comparisons of utility. Journal of Political Economy, 63, 309–321.CrossRef
Zurück zum Zitat Hausner, M. (1954). Multidimensional utilities. In R. Thrall & C. Coombs (Eds.), Decision processes (pp. 167–180). New York: Wiley. Hausner, M. (1954). Multidimensional utilities. In R. Thrall & C. Coombs (Eds.), Decision processes (pp. 167–180). New York: Wiley.
Zurück zum Zitat Hausner, M., & Wendel, J. G. (1952). Ordered vector spaces. Proceedings of the American Mathematical Society, 3, 977–982.CrossRef Hausner, M., & Wendel, J. G. (1952). Ordered vector spaces. Proceedings of the American Mathematical Society, 3, 977–982.CrossRef
Zurück zum Zitat Henson, C. W. (1972). On the nonstandard representation of measures. Transactions of the American Mathematical Society, 172, 437–446.CrossRef Henson, C. W. (1972). On the nonstandard representation of measures. Transactions of the American Mathematical Society, 172, 437–446.CrossRef
Zurück zum Zitat Herden, G., & Mehta, G. B. (2004). The Debreu gap lemma and some generalizations. Journal of Mathematical Economics, 40(7), 747–769.CrossRef Herden, G., & Mehta, G. B. (2004). The Debreu gap lemma and some generalizations. Journal of Mathematical Economics, 40(7), 747–769.CrossRef
Zurück zum Zitat Herzberg, F. (2007). Internal laws of probability, generalized likelihoods and Lewis’ infinitesimal chances. British Journal of Philosophy of Science, 58(1), 25–43.CrossRef Herzberg, F. (2007). Internal laws of probability, generalized likelihoods and Lewis’ infinitesimal chances. British Journal of Philosophy of Science, 58(1), 25–43.CrossRef
Zurück zum Zitat Herzberg, F. (2009). Elementary non-Archimedean utility theory. Mathematical Social Sciences, 58(1), 8–14.CrossRef Herzberg, F. (2009). Elementary non-Archimedean utility theory. Mathematical Social Sciences, 58(1), 8–14.CrossRef
Zurück zum Zitat Herzberg, F. (2011). Hyperreal expected utilities and Pascal’s wager. Logique et Anal. (N.S.), 54(213), 69–108. Herzberg, F. (2011). Hyperreal expected utilities and Pascal’s wager. Logique et Anal. (N.S.), 54(213), 69–108.
Zurück zum Zitat Holder, R. (2002). Fine-tuning, multiple universes and theism. Nous, 36(2), 295–312.CrossRef Holder, R. (2002). Fine-tuning, multiple universes and theism. Nous, 36(2), 295–312.CrossRef
Zurück zum Zitat Horsten, L., & Wenmackers, S. (2013). Fair infinite lotteries. Synthese, 190, 37–61. Horsten, L., & Wenmackers, S. (2013). Fair infinite lotteries. Synthese, 190, 37–61.
Zurück zum Zitat Jaffray, J.-Y., (1974a). Existence, propriétés de continuité, additivité de fonctions d’utilité sur un espace partiellement ou totalement ordonné. Ph.D. thesis, Université de Paris VI, Paris. Jaffray, J.-Y., (1974a). Existence, propriétés de continuité, additivité de fonctions d’utilité sur un espace partiellement ou totalement ordonné. Ph.D. thesis, Université de Paris VI, Paris.
Zurück zum Zitat Jaffray, J.-Y. (1974b). On the extension of additive utilities to infinite sets. Journal of Mathematical Psychology, 11, 431–452.CrossRef Jaffray, J.-Y. (1974b). On the extension of additive utilities to infinite sets. Journal of Mathematical Psychology, 11, 431–452.CrossRef
Zurück zum Zitat Jaynes, E. (1968). Prior probabilities. IEEE Transactions on Systems Science and Cybernetics, 4(3), 227–241. Jaynes, E. (1968). Prior probabilities. IEEE Transactions on Systems Science and Cybernetics, 4(3), 227–241.
Zurück zum Zitat Kannai, Y. I. (1992). Nonstandard concave utility functions. Journal of Mathematical Economics, 21(1), 51–58.CrossRef Kannai, Y. I. (1992). Nonstandard concave utility functions. Journal of Mathematical Economics, 21(1), 51–58.CrossRef
Zurück zum Zitat Kirman, A. P., & Sondermann, D. (1972). Arrow’s theorem, many agents, and invisible dictators. Journal of Economic Theory, 5(2), 267–277.CrossRef Kirman, A. P., & Sondermann, D. (1972). Arrow’s theorem, many agents, and invisible dictators. Journal of Economic Theory, 5(2), 267–277.CrossRef
Zurück zum Zitat Kothiyal, A. A., Spinu, V., & Wakker, P. (April, 2013). Average utility: A preference foundation (preprint). Kothiyal, A. A., Spinu, V., & Wakker, P. (April, 2013). Average utility: A preference foundation (preprint).
Zurück zum Zitat Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement I: Additive and polynomial representations. New York: Academic Press. Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement I: Additive and polynomial representations. New York: Academic Press.
Zurück zum Zitat Krauss, P. H. (1968). Representation of conditional probability measures on Boolean algebras. Acta Mathematica Academiae Scientiarum Hungarica, 19, 229–241.CrossRef Krauss, P. H. (1968). Representation of conditional probability measures on Boolean algebras. Acta Mathematica Academiae Scientiarum Hungarica, 19, 229–241.CrossRef
Zurück zum Zitat Lauwers, L. (1997). Topological aggregation, the case of an infinite population. Social Choice and Welfare, 14(2), 319–332.CrossRef Lauwers, L. (1997). Topological aggregation, the case of an infinite population. Social Choice and Welfare, 14(2), 319–332.CrossRef
Zurück zum Zitat Lauwers, L. (1998). Intertemporal objective functions: Strong Pareto versus anonymity. Mathematical Social Sciences, 35(1), 37–55.CrossRef Lauwers, L. (1998). Intertemporal objective functions: Strong Pareto versus anonymity. Mathematical Social Sciences, 35(1), 37–55.CrossRef
Zurück zum Zitat Lauwers, L. (2010). Ordering infinite utility streams comes at the cost of a non-Ramsey set. Journal of Mathematical Economics, 46(1), 32–37.CrossRef Lauwers, L. (2010). Ordering infinite utility streams comes at the cost of a non-Ramsey set. Journal of Mathematical Economics, 46(1), 32–37.CrossRef
Zurück zum Zitat Lauwers, L., & Vallentyne, P. (2004). Infinite utilitarianism: More is always better. Economics and Philosophy, 20, 307–330.CrossRef Lauwers, L., & Vallentyne, P. (2004). Infinite utilitarianism: More is always better. Economics and Philosophy, 20, 307–330.CrossRef
Zurück zum Zitat Lauwers, L., & Van Liedekerke, L. (1995). Ultraproducts and aggregation. Journal of Mathematical Economics, 24(3), 217–237.CrossRef Lauwers, L., & Van Liedekerke, L. (1995). Ultraproducts and aggregation. Journal of Mathematical Economics, 24(3), 217–237.CrossRef
Zurück zum Zitat Lehmann, D. (2001). Expected qualitative utility maximization. Games and Economic Behavior, 35(1–2), 54–79.CrossRef Lehmann, D. (2001). Expected qualitative utility maximization. Games and Economic Behavior, 35(1–2), 54–79.CrossRef
Zurück zum Zitat Lehmann, D., & Magidor, M. (1992). What does a conditional knowledge base entail? Artificial Intelligence, 55, 1–60.CrossRef Lehmann, D., & Magidor, M. (1992). What does a conditional knowledge base entail? Artificial Intelligence, 55, 1–60.CrossRef
Zurück zum Zitat Luce, R. D., Krantz, D. H., Suppes, P., & Tversky, A. (1990). Foundations of measurement III: Representation, axiomatization, and invariance. San Diego, CA: Academic Press. Luce, R. D., Krantz, D. H., Suppes, P., & Tversky, A. (1990). Foundations of measurement III: Representation, axiomatization, and invariance. San Diego, CA: Academic Press.
Zurück zum Zitat McGee, V. (1994). Learning the impossible. In E. Eells & B. Skyrms (Eds.), Probability and conditionals (pp. 177–199). Cambridge: Cambridge University Press. McGee, V. (1994). Learning the impossible. In E. Eells & B. Skyrms (Eds.), Probability and conditionals (pp. 177–199). Cambridge: Cambridge University Press.
Zurück zum Zitat Narens, L. (1974a). Measurement without Archimedean axioms. Philosophy of Science, 41, 374–393.CrossRef Narens, L. (1974a). Measurement without Archimedean axioms. Philosophy of Science, 41, 374–393.CrossRef
Zurück zum Zitat Narens, L. (1974b). Minimal conditions for additive conjoint measurement and qualitative probability. Journal of Mathematical Psychology, 11, 404–430.CrossRef Narens, L. (1974b). Minimal conditions for additive conjoint measurement and qualitative probability. Journal of Mathematical Psychology, 11, 404–430.CrossRef
Zurück zum Zitat Narens, L. (1985). Abstract measurement theory. Cambridge, MA: MIT Press. Narens, L. (1985). Abstract measurement theory. Cambridge, MA: MIT Press.
Zurück zum Zitat Norton, J. (2007). Probability disassembled. British Journal of Philosophy of Science, 58(2), 141–171.CrossRef Norton, J. (2007). Probability disassembled. British Journal of Philosophy of Science, 58(2), 141–171.CrossRef
Zurück zum Zitat Parfit, D. (1984). Reasons and persons. Oxford: Clarendon Press. Parfit, D. (1984). Reasons and persons. Oxford: Clarendon Press.
Zurück zum Zitat Pedersen, A. P. (2013). Archimedes wake. Ph.D. thesis, Carnegie Mellon University, Department of Philosophy. Pedersen, A. P. (2013). Archimedes wake. Ph.D. thesis, Carnegie Mellon University, Department of Philosophy.
Zurück zum Zitat Pfanzagl, J (In cooperation with V. Baumann and H. Huber). (1968). Theory of measurement. Physica-Verlag, Würzburg: . Pfanzagl, J (In cooperation with V. Baumann and H. Huber). (1968). Theory of measurement. Physica-Verlag, Würzburg: .
Zurück zum Zitat Ramsey, F. P. (1928). A mathematical theory of saving. Economic Journal, 38, 543–559.CrossRef Ramsey, F. P. (1928). A mathematical theory of saving. Economic Journal, 38, 543–559.CrossRef
Zurück zum Zitat Rawls, J. (1999). A Theory of Justice, revised ed. Oxford, UK: Oxford University Press. Rawls, J. (1999). A Theory of Justice, revised ed. Oxford, UK: Oxford University Press.
Zurück zum Zitat Richter, M. K. (1971). Rational choice. In Preferences, utility and demand (a Minnesota symposium) (pp. 29–58). New York: Harcourt Brace Jovanovich. Richter, M. K. (1971). Rational choice. In Preferences, utility and demand (a Minnesota symposium) (pp. 29–58). New York: Harcourt Brace Jovanovich.
Zurück zum Zitat Roemer, J., & Suzumura, K. (Ed.). (2007). In Intergenerational equity and sustainability. Basingstoke: Palgrave Macmillan. Roemer, J., & Suzumura, K. (Ed.). (2007). In Intergenerational equity and sustainability. Basingstoke: Palgrave Macmillan.
Zurück zum Zitat Ryberg, J., & Tännsjö, T. (Eds.). (2004). In The Repugnant conclusion. Essays on population. Dordrecht: Kluwer. Ryberg, J., & Tännsjö, T. (Eds.). (2004). In The Repugnant conclusion. Essays on population. Dordrecht: Kluwer.
Zurück zum Zitat Sakai, T. (2010a). A characterization and an impossibility of finite length anonymity for infinite generations. Journal of Mathematical Economics, 46(5), 877–883.CrossRef Sakai, T. (2010a). A characterization and an impossibility of finite length anonymity for infinite generations. Journal of Mathematical Economics, 46(5), 877–883.CrossRef
Zurück zum Zitat Sakai, T. (2010b). Intergenerational equity and an explicit construction of welfare criteria. Social Choice and Welfare, 35(3), 393–414.CrossRef Sakai, T. (2010b). Intergenerational equity and an explicit construction of welfare criteria. Social Choice and Welfare, 35(3), 393–414.CrossRef
Zurück zum Zitat Savage, L. J. (1954). The foundations of statistics. New York: Wiley. Savage, L. J. (1954). The foundations of statistics. New York: Wiley.
Zurück zum Zitat Seidenfeld, T., Schervish, M. J., & Kadane, J. B. (2009). Preference for equivalent random variables: A price for unbounded utilities. Journal of Mathematical Economics, 45(5–6), 329–340. Seidenfeld, T., Schervish, M. J., & Kadane, J. B. (2009). Preference for equivalent random variables: A price for unbounded utilities. Journal of Mathematical Economics, 45(5–6), 329–340.
Zurück zum Zitat Shorb, A. M. (1975). Completely additive measure and integration. Proceedings of the American Mathematical Society, 53(2), 453–459.CrossRef Shorb, A. M. (1975). Completely additive measure and integration. Proceedings of the American Mathematical Society, 53(2), 453–459.CrossRef
Zurück zum Zitat Sidgwick, H. (1884). The methods of ethics. London: Macmillan. Sidgwick, H. (1884). The methods of ethics. London: Macmillan.
Zurück zum Zitat Skala, H. J. (1974). Nonstandard utilities and the foundation of game theory. International Journal of Game Theory, 3, 67–81.CrossRef Skala, H. J. (1974). Nonstandard utilities and the foundation of game theory. International Journal of Game Theory, 3, 67–81.CrossRef
Zurück zum Zitat Skala, H. J. (1975). Non-Archimedean utility theory. Berlin: Springer.CrossRef Skala, H. J. (1975). Non-Archimedean utility theory. Berlin: Springer.CrossRef
Zurück zum Zitat Stigum, B. P. (1990). Toward a formal science of economics. Cambridge, MA: MIT Press. Stigum, B. P. (1990). Toward a formal science of economics. Cambridge, MA: MIT Press.
Zurück zum Zitat Streufert, P. A. (1995). A general theory of separability for preferences defined on a countably infinite product space. Journal of Mathematical Economics, 24(5), 407–434.CrossRef Streufert, P. A. (1995). A general theory of separability for preferences defined on a countably infinite product space. Journal of Mathematical Economics, 24(5), 407–434.CrossRef
Zurück zum Zitat von Weizsäcker, C. (1965). Existence of optimal programs of accumulation for an infinite time horizon. Review of Economic Studies, 32, 85–104.CrossRef von Weizsäcker, C. (1965). Existence of optimal programs of accumulation for an infinite time horizon. Review of Economic Studies, 32, 85–104.CrossRef
Zurück zum Zitat Wakker, P. (1986). The repetitions approach to characterize cardinal utility. Theory and Decision, 20(1), 33–40.CrossRef Wakker, P. (1986). The repetitions approach to characterize cardinal utility. Theory and Decision, 20(1), 33–40.CrossRef
Zurück zum Zitat Wakker, P. (1989). Additive representations of preferences. Dordrecht: Kluwer.CrossRef Wakker, P. (1989). Additive representations of preferences. Dordrecht: Kluwer.CrossRef
Zurück zum Zitat Wakker, P., & Zank, H. (1999). State dependent expected utility for Savage’s state space. Mathematics of Operations Research, 24(1), 8–34.CrossRef Wakker, P., & Zank, H. (1999). State dependent expected utility for Savage’s state space. Mathematics of Operations Research, 24(1), 8–34.CrossRef
Zurück zum Zitat Wattenberg, F. (1977). Nonstandard measure theory-Hausdorff measure. Proceedings of the American Mathematical Society, 65(2), 326–331. Wattenberg, F. (1977). Nonstandard measure theory-Hausdorff measure. Proceedings of the American Mathematical Society, 65(2), 326–331.
Zurück zum Zitat Wattenberg, F. (1979). Nonstandard measure theory: Avoiding pathological sets. Transactions of the American Mathematical Society, 250, 357–368.CrossRef Wattenberg, F. (1979). Nonstandard measure theory: Avoiding pathological sets. Transactions of the American Mathematical Society, 250, 357–368.CrossRef
Zurück zum Zitat Wenmackers, S. (2012, forthcoming). Ultralarge lotteries: Analyzing the lottery paradox using non-standard analysis. Journal of Applied Logic. Wenmackers, S. (2012, forthcoming). Ultralarge lotteries: Analyzing the lottery paradox using non-standard analysis. Journal of Applied Logic.
Zurück zum Zitat Wilson, N. (1995). An order of magnitude calculus. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence (UAI ’95). Morgan Kaufmann, San Mateo, CA, pp. 548–555. Wilson, N. (1995). An order of magnitude calculus. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence (UAI ’95). Morgan Kaufmann, San Mateo, CA, pp. 548–555.
Zurück zum Zitat Zame, W. R. (2007). Can intergenerational equity be operationalized? Theoretical Economics, 2, 187–202. Zame, W. R. (2007). Can intergenerational equity be operationalized? Theoretical Economics, 2, 187–202.
Metadaten
Titel
Additive representation of separable preferences over infinite products
verfasst von
Marcus Pivato
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Theory and Decision / Ausgabe 1/2014
Print ISSN: 0040-5833
Elektronische ISSN: 1573-7187
DOI
https://doi.org/10.1007/s11238-013-9391-2

Weitere Artikel der Ausgabe 1/2014

Theory and Decision 1/2014 Zur Ausgabe

Premium Partner