Skip to main content
Erschienen in: Topics in Catalysis 1-4/2024

29.04.2023 | Review Paper

Plasmonic-Based TiO2 and TiO2 Nanoparticles for Photocatalytic CO2 to Methanol Conversion in Energy Applications: Current Status and Future Prospects

verfasst von: Subhendu Chakroborty, Nibedita Nath, Siba Soren, Arundhati Barik, Kirtanjot Kaur

Erschienen in: Topics in Catalysis | Ausgabe 1-4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Burning hydrocarbon fuels at ever-increasing rates and producing huge amounts of carbon dioxide emissions are the root causes of the global energy problem and climate change. The transformation of CO2 into other forms of energy, such as CO, CH4, and CH3OH, is one potential approach to the complex problems of environmental pollution, climate change, and global warming. Methanol is one of these goods that is one of the most significant and highly adaptable chemicals regularly used in industry and daily life. Methanol is one of the most important and widely used chemicals. Photocatalysis answers the present problems facing the environment and the energy sector. This article explores recent developments in the photocatalytic conversion of CO2 to CH3OH using catalysts based on plasmonic TiO2 and TiO2 nanomaterial. The process involves converting carbon dioxide into methanol.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443CrossRef Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443CrossRef
2.
Zurück zum Zitat Hicks JC, Drese JH, Fauth DJ, Gray ML, Qi G, Jones CW (2008) Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J Am Chem Soc 130(10):2902–2903PubMedCrossRef Hicks JC, Drese JH, Fauth DJ, Gray ML, Qi G, Jones CW (2008) Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J Am Chem Soc 130(10):2902–2903PubMedCrossRef
3.
Zurück zum Zitat Ritter SK (2007) What can we do with CO? Chem Eng News Arch 85(18):11–17CrossRef Ritter SK (2007) What can we do with CO? Chem Eng News Arch 85(18):11–17CrossRef
4.
Zurück zum Zitat Robinson AB, Robinson NE, Soon W (2007) Environmental Effects of increased atmospheric carbon dioxide. J Am Physicians Surg 12:79–90 Robinson AB, Robinson NE, Soon W (2007) Environmental Effects of increased atmospheric carbon dioxide. J Am Physicians Surg 12:79–90
5.
Zurück zum Zitat Dinger A et al. (2017) Batteries for electric cars: Challenges, opportunities, and the outlook to 2020. The Boston Consulting Group. Vol 7 Dinger A et al. (2017) Batteries for electric cars: Challenges, opportunities, and the outlook to 2020. The Boston Consulting Group. Vol 7
6.
Zurück zum Zitat Moniz EJ (2010) Nanotechnology for the energy challenge. Wiley, Hoboken Moniz EJ (2010) Nanotechnology for the energy challenge. Wiley, Hoboken
7.
Zurück zum Zitat Budzianowski WM (2012) Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs. Renew Sustain Energy Rev 16(9):6507–6521CrossRef Budzianowski WM (2012) Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs. Renew Sustain Energy Rev 16(9):6507–6521CrossRef
8.
Zurück zum Zitat Centi G, Perathoner S (2011) CO2-based energy vectors for the storage of solar energy. Greenh Gases: Sci Technol 1(1):21–35CrossRef Centi G, Perathoner S (2011) CO2-based energy vectors for the storage of solar energy. Greenh Gases: Sci Technol 1(1):21–35CrossRef
9.
Zurück zum Zitat Peters M, Mueller T, Leitner W (2009) CO2: From waste to value. Chem Eng 813:46–47 Peters M, Mueller T, Leitner W (2009) CO2: From waste to value. Chem Eng 813:46–47
10.
11.
Zurück zum Zitat Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: Opportunities and challenges. Dalton Trans 28:2975–2992CrossRef Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: Opportunities and challenges. Dalton Trans 28:2975–2992CrossRef
12.
Zurück zum Zitat Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148(3–4):191–205CrossRef Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148(3–4):191–205CrossRef
13.
Zurück zum Zitat Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernández JR, Ferrari MC, Gross R, Hallett JP, Haszeldine RS (2014) Carbon capture and storage update. Energy Environ Sci 7(1):130–189CrossRef Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernández JR, Ferrari MC, Gross R, Hallett JP, Haszeldine RS (2014) Carbon capture and storage update. Energy Environ Sci 7(1):130–189CrossRef
15.
Zurück zum Zitat Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy environ sci 5(6):7281–7305CrossRef Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy environ sci 5(6):7281–7305CrossRef
16.
Zurück zum Zitat Jarvis SM, Samsatli S (2018) Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis. Renew Sust Energ Rev 85:46–68CrossRef Jarvis SM, Samsatli S (2018) Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis. Renew Sust Energ Rev 85:46–68CrossRef
17.
Zurück zum Zitat Nath N (2020) Conversion of CO2 to high value products. In: Advanced catalysis processes in petrochemicals and petroleum refining: emerging research and opportunities. IGI Global, pp 48–95 Nath N (2020) Conversion of CO2 to high value products. In: Advanced catalysis processes in petrochemicals and petroleum refining: emerging research and opportunities. IGI Global, pp 48–95
18.
Zurück zum Zitat Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16(3):307–325CrossRef Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16(3):307–325CrossRef
19.
Zurück zum Zitat Kaur J, Sharma I, Zangrando E, Pal K, Mehta SK, Kataria R (2023) Fabrication of novel copper MOF nanoparticles for nanozymatic detection of mercury ions. J Mater Res Technol 22:278–291CrossRef Kaur J, Sharma I, Zangrando E, Pal K, Mehta SK, Kataria R (2023) Fabrication of novel copper MOF nanoparticles for nanozymatic detection of mercury ions. J Mater Res Technol 22:278–291CrossRef
20.
Zurück zum Zitat Pal K, Chakroborty S, Panda P, Nath N, Soren S (2022) Environmental assessment of wastewater management via hybrid nanocomposite matrix implications—an organized review. Environ Sci Pollut Res 29(51):76626–76643CrossRef Pal K, Chakroborty S, Panda P, Nath N, Soren S (2022) Environmental assessment of wastewater management via hybrid nanocomposite matrix implications—an organized review. Environ Sci Pollut Res 29(51):76626–76643CrossRef
21.
Zurück zum Zitat Pal K, Asthana N, Aljabali AA, Bhardwaj SK, Kralj S, Penkova A, Thomas S, Zaheer T, Gomes de Souza F (2022) A critical review on multifunctional smart materials’ nanographene’emerging avenue: Nano-imaging and biosensor applications. Crit Rev Solid State Mater Sci 47(5):691–707CrossRefADS Pal K, Asthana N, Aljabali AA, Bhardwaj SK, Kralj S, Penkova A, Thomas S, Zaheer T, Gomes de Souza F (2022) A critical review on multifunctional smart materials’ nanographene’emerging avenue: Nano-imaging and biosensor applications. Crit Rev Solid State Mater Sci 47(5):691–707CrossRefADS
22.
Zurück zum Zitat Pal K, Si A, El-Sayyad GS, Elkodous MA, Kumar R, El-Batal AI, Kralj S, Thomas S (2021) Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: optoelectronics and biotechnological aspects. Crit Rev Solid State Mater Sci 46(5):385–449CrossRefADS Pal K, Si A, El-Sayyad GS, Elkodous MA, Kumar R, El-Batal AI, Kralj S, Thomas S (2021) Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: optoelectronics and biotechnological aspects. Crit Rev Solid State Mater Sci 46(5):385–449CrossRefADS
23.
Zurück zum Zitat Nath N, Chakroborty S, Panda P, Pal K (2022) High yield silica-based emerging nanoparticles activities for hybrid catalyst applications. Top Catal 65(19–20):1706–1718CrossRef Nath N, Chakroborty S, Panda P, Pal K (2022) High yield silica-based emerging nanoparticles activities for hybrid catalyst applications. Top Catal 65(19–20):1706–1718CrossRef
25.
Zurück zum Zitat Sang L, Zhao Y, Burda C (2014) TiO2 nanoparticles as functional building blocks. Chem rev 114(19):9283–9318PubMedCrossRef Sang L, Zhao Y, Burda C (2014) TiO2 nanoparticles as functional building blocks. Chem rev 114(19):9283–9318PubMedCrossRef
26.
Zurück zum Zitat Zhu S, Zheng J, Xin S, Nie L (2022) Preparation of flexible Pt/TiO2/γ-Al2O3 nanofiber paper for room-temperature HCHO oxidation and particulate filtration. Chem Eng J 427:130951CrossRef Zhu S, Zheng J, Xin S, Nie L (2022) Preparation of flexible Pt/TiO2/γ-Al2O3 nanofiber paper for room-temperature HCHO oxidation and particulate filtration. Chem Eng J 427:130951CrossRef
27.
Zurück zum Zitat Balarabe BY, Maity P (2022) Visible light-driven complete photocatalytic oxidation of organic dye by plasmonic Au-TiO2 nanocatalyst under batch and continuous flow condition. Colloids Surf A: Physicochem Eng Asp 655:130247CrossRef Balarabe BY, Maity P (2022) Visible light-driven complete photocatalytic oxidation of organic dye by plasmonic Au-TiO2 nanocatalyst under batch and continuous flow condition. Colloids Surf A: Physicochem Eng Asp 655:130247CrossRef
28.
Zurück zum Zitat Li M, Wang Y, Fan Y, Liao L, Zhou X, Mo S, Wang H (2022) Controllable synthesis various morphologies of 3D hierarchical MnOx-TiO2 nanocatalysts for photothermocatalysis toluene and NO with free-ammonia. J Colloid Interface Sci 608:3004–3012PubMedCrossRefADS Li M, Wang Y, Fan Y, Liao L, Zhou X, Mo S, Wang H (2022) Controllable synthesis various morphologies of 3D hierarchical MnOx-TiO2 nanocatalysts for photothermocatalysis toluene and NO with free-ammonia. J Colloid Interface Sci 608:3004–3012PubMedCrossRefADS
29.
Zurück zum Zitat Peters M, Köhler B, Kuckshinrichs W, Leitner W, Markewitz P, Müller TE (2011) Chemical technologies for exploiting and recycling carbon dioxide into the value chain. Chemsuschem 4:1216–1240PubMedCrossRef Peters M, Köhler B, Kuckshinrichs W, Leitner W, Markewitz P, Müller TE (2011) Chemical technologies for exploiting and recycling carbon dioxide into the value chain. Chemsuschem 4:1216–1240PubMedCrossRef
30.
Zurück zum Zitat Mittasch A, Pier M (1926) Synthetic manufacture of methanol. US Patent 1,569,775 Mittasch A, Pier M (1926) Synthetic manufacture of methanol. US Patent 1,569,775
31.
Zurück zum Zitat Davies P, Snowdon FF, Bridger GW, Hughes DO, Young PW, T.Gallagher J, Kidd J M (1966) British patent UK Patent 1010871, 1159035 to ICI Ltd. Davies P, Snowdon FF, Bridger GW, Hughes DO, Young PW, T.Gallagher J, Kidd J M (1966) British patent UK Patent 1010871, 1159035 to ICI Ltd.
32.
Zurück zum Zitat Bridger GW, Spencer MS (1989) Catalyst handbook, 2nd edn. Wolfe Publishing, London Bridger GW, Spencer MS (1989) Catalyst handbook, 2nd edn. Wolfe Publishing, London
34.
Zurück zum Zitat McGrath KM, Prakash GKS, Olah GA (2004) Direct methanol fuel cells. J Ind Eng Chem 10(7):1063–1080 McGrath KM, Prakash GKS, Olah GA (2004) Direct methanol fuel cells. J Ind Eng Chem 10(7):1063–1080
36.
Zurück zum Zitat Olah GA, Goeppert A, Prakash GKS (2011) Beyond oil and gas: The methanol economy. Wiley, Hoboken Olah GA, Goeppert A, Prakash GKS (2011) Beyond oil and gas: The methanol economy. Wiley, Hoboken
37.
Zurück zum Zitat Olah GA, Prakash GKS, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133(33):12881–12898PubMedCrossRef Olah GA, Prakash GKS, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133(33):12881–12898PubMedCrossRef
38.
Zurück zum Zitat Olah GA, Goeppert A, Prakash GS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J org chem 74(2):487–498PubMedCrossRef Olah GA, Goeppert A, Prakash GS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J org chem 74(2):487–498PubMedCrossRef
39.
Zurück zum Zitat Olah GA, Goeppert A, Prakash GS (2018) Beyond oil and gas: the methanol economy. John Wiley & SonsCrossRef Olah GA, Goeppert A, Prakash GS (2018) Beyond oil and gas: the methanol economy. John Wiley & SonsCrossRef
40.
Zurück zum Zitat Albo J, Alvarez-Guerra M, Castaño P, Irabien A (2015) Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem 17(4):2304–2324CrossRef Albo J, Alvarez-Guerra M, Castaño P, Irabien A (2015) Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem 17(4):2304–2324CrossRef
42.
Zurück zum Zitat Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, Pérez-Ramírez J (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy environ sci 6(11):3112–3135CrossRef Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, Pérez-Ramírez J (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy environ sci 6(11):3112–3135CrossRef
43.
Zurück zum Zitat Lan Y, Lu Y, Ren Z (2013) Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy 2(5):1031–1045CrossRef Lan Y, Lu Y, Ren Z (2013) Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy 2(5):1031–1045CrossRef
44.
Zurück zum Zitat Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38PubMedCrossRefADS Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38PubMedCrossRefADS
45.
Zurück zum Zitat Xia T, Long R, Gao C, Xiong Y (2019) Design of atomically dispersed catalytic sites for photocatalytic CO2 reduction. Nanoscale 11(23):11064–11070PubMedCrossRef Xia T, Long R, Gao C, Xiong Y (2019) Design of atomically dispersed catalytic sites for photocatalytic CO2 reduction. Nanoscale 11(23):11064–11070PubMedCrossRef
46.
47.
Zurück zum Zitat Hong J, Zhang W, Ren J, Xu R (2013) Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods. Anal methods 5(5):1086–1097CrossRef Hong J, Zhang W, Ren J, Xu R (2013) Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods. Anal methods 5(5):1086–1097CrossRef
48.
Zurück zum Zitat Kalamaras E, Maroto-Valer MM, Shao M, Xuan J, Wang H (2018) Solar carbon fuel via photoelectrochemistry. Catal Today 317:56–75CrossRef Kalamaras E, Maroto-Valer MM, Shao M, Xuan J, Wang H (2018) Solar carbon fuel via photoelectrochemistry. Catal Today 317:56–75CrossRef
49.
Zurück zum Zitat Sivula K, Van De Krol R (2016) Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mater 1(2):1–6CrossRef Sivula K, Van De Krol R (2016) Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mater 1(2):1–6CrossRef
50.
Zurück zum Zitat Castro S, Albo J, Irabien A (2018) ACS Sustainable Chem Eng 6:15877–15894CrossRef Castro S, Albo J, Irabien A (2018) ACS Sustainable Chem Eng 6:15877–15894CrossRef
51.
Zurück zum Zitat Pawar AU, Kim CW, Nguyen-Le MT, Kang YS (2019) General review on the components and parameters of photoelectrochemical system for CO2 reduction with in situ analysis. ACS Sustain Chem Eng 7(8):7431–7455CrossRef Pawar AU, Kim CW, Nguyen-Le MT, Kang YS (2019) General review on the components and parameters of photoelectrochemical system for CO2 reduction with in situ analysis. ACS Sustain Chem Eng 7(8):7431–7455CrossRef
52.
Zurück zum Zitat Taniguchi I, Aurian-Blajeni B (1984) The reduction of carbon dioxide at illuminated p-type semiconductor electrodes in nonaqueous media. Electrochim Acta 29:923–932CrossRef Taniguchi I, Aurian-Blajeni B (1984) The reduction of carbon dioxide at illuminated p-type semiconductor electrodes in nonaqueous media. Electrochim Acta 29:923–932CrossRef
53.
Zurück zum Zitat Gennaro A, Isse AA, Vianello E (1990) Solubility and electrochemical determination of CO2 in some dipolar aprotic solvents. J Electroanal Chem Interfacial Electrochem 289:203–215CrossRef Gennaro A, Isse AA, Vianello E (1990) Solubility and electrochemical determination of CO2 in some dipolar aprotic solvents. J Electroanal Chem Interfacial Electrochem 289:203–215CrossRef
54.
Zurück zum Zitat Taniguchi I (1989) Electrochemical and photochemical reduction of carbon dioxide. In: White JO, Conway BE (eds) Modern aspects of electrochemistry, vol 20. Plenum, New York, pp 327–400 Taniguchi I (1989) Electrochemical and photochemical reduction of carbon dioxide. In: White JO, Conway BE (eds) Modern aspects of electrochemistry, vol 20. Plenum, New York, pp 327–400
55.
Zurück zum Zitat Tomita Y, Hori Y (1998) Electrochemical reduction of carbon dioxide at a platinum electrode in acetonitrile-water mixtures. Stud Surf Sci Catal 114:581–584CrossRef Tomita Y, Hori Y (1998) Electrochemical reduction of carbon dioxide at a platinum electrode in acetonitrile-water mixtures. Stud Surf Sci Catal 114:581–584CrossRef
56.
Zurück zum Zitat Patial S, Kumar R, Raizada P, Singh P, Van Le Q, Lichtfouse E, Nguyen DL, Nguyen VH (2021) Boosting light-driven CO2 reduction into solar fuels: Mainstream avenues for engineering ZnO-based photocatalysts. Environ Res 197:111134PubMedCrossRef Patial S, Kumar R, Raizada P, Singh P, Van Le Q, Lichtfouse E, Nguyen DL, Nguyen VH (2021) Boosting light-driven CO2 reduction into solar fuels: Mainstream avenues for engineering ZnO-based photocatalysts. Environ Res 197:111134PubMedCrossRef
57.
Zurück zum Zitat Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96CrossRef Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96CrossRef
58.
Zurück zum Zitat Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959PubMedCrossRef Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959PubMedCrossRef
59.
Zurück zum Zitat Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570PubMedCrossRef Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570PubMedCrossRef
60.
Zurück zum Zitat Zhong M, Sato Y, Kurniawan M, Apostoluk A, Masenelli B, Maeda E, Ikuhara Y, Delaunay JJ (2012) ZnO dense nanowire array on a film structure in a single crystal domain texture for optical and photoelectrochemical applications. Nanotechnology 23(49):495602PubMedCrossRef Zhong M, Sato Y, Kurniawan M, Apostoluk A, Masenelli B, Maeda E, Ikuhara Y, Delaunay JJ (2012) ZnO dense nanowire array on a film structure in a single crystal domain texture for optical and photoelectrochemical applications. Nanotechnology 23(49):495602PubMedCrossRef
61.
Zurück zum Zitat Ohtani B (2008) Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chem Lett 37(3):216–229CrossRef Ohtani B (2008) Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chem Lett 37(3):216–229CrossRef
62.
Zurück zum Zitat Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42(7):2568–2580PubMedCrossRef Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42(7):2568–2580PubMedCrossRef
63.
Zurück zum Zitat Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Cheml Rev 95(3):735–758CrossRef Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Cheml Rev 95(3):735–758CrossRef
64.
Zurück zum Zitat Asahi RY, Morikawa TA, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271PubMedCrossRef Asahi RY, Morikawa TA, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271PubMedCrossRef
65.
Zurück zum Zitat Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12R):8269CrossRefADS Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12R):8269CrossRefADS
66.
Zurück zum Zitat Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50(13):2904–2939CrossRef Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50(13):2904–2939CrossRef
67.
Zurück zum Zitat Han F, Kambala VS, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359(1–2):25–40CrossRef Han F, Kambala VS, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359(1–2):25–40CrossRef
68.
Zurück zum Zitat Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582CrossRefADS Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582CrossRefADS
69.
Zurück zum Zitat Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758CrossRef Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758CrossRef
70.
Zurück zum Zitat Nozik AJ, Memming R (1996) Physical chemistry of semiconductor− liquid interfaces. J Phys Chem 100(31):13061–13078CrossRef Nozik AJ, Memming R (1996) Physical chemistry of semiconductor− liquid interfaces. J Phys Chem 100(31):13061–13078CrossRef
71.
Zurück zum Zitat Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229CrossRefADS Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229CrossRefADS
72.
Zurück zum Zitat Wold A (1993) Photocatalytic properties of titanium dioxide (TiO2). Chem Mater 5(3):280–283CrossRef Wold A (1993) Photocatalytic properties of titanium dioxide (TiO2). Chem Mater 5(3):280–283CrossRef
73.
Zurück zum Zitat Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49(1):1–4CrossRef Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49(1):1–4CrossRef
74.
Zurück zum Zitat Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177CrossRef Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177CrossRef
75.
Zurück zum Zitat Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Met 28(1):1–50CrossRef Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Met 28(1):1–50CrossRef
76.
Zurück zum Zitat Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1(1):1–21CrossRef Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1(1):1–21CrossRef
77.
79.
Zurück zum Zitat Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357CrossRef Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357CrossRef
80.
Zurück zum Zitat Heller A (1995) Chemistry and applications of photocatalytic oxidation of thin organic films. Acc Chem Res 28(12):503–508CrossRef Heller A (1995) Chemistry and applications of photocatalytic oxidation of thin organic films. Acc Chem Res 28(12):503–508CrossRef
81.
Zurück zum Zitat Kočí K, Obalová L, Lacný Z (2008) Photocatalytic reduction of CO2 over TiO2 based catalysts. Chem Pap 62(1):1–9CrossRef Kočí K, Obalová L, Lacný Z (2008) Photocatalytic reduction of CO2 over TiO2 based catalysts. Chem Pap 62(1):1–9CrossRef
82.
Zurück zum Zitat Wu W, Liang S, Chen Y, Shen L, Yuan R, Wu L (2013) Mechanism and improvement of the visible light photocatalysis of organic pollutants over microcrystalline AgNbO3 prepared by a sol–gel method. Mater Res Bull 48(4):1618–1626CrossRef Wu W, Liang S, Chen Y, Shen L, Yuan R, Wu L (2013) Mechanism and improvement of the visible light photocatalysis of organic pollutants over microcrystalline AgNbO3 prepared by a sol–gel method. Mater Res Bull 48(4):1618–1626CrossRef
83.
Zurück zum Zitat Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M, Li M, Bristow AD, Wu N (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134(36):15033–15041PubMedCrossRef Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M, Li M, Bristow AD, Wu N (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134(36):15033–15041PubMedCrossRef
84.
Zurück zum Zitat Jiang W, Bai S, Wang L, Wang X, Yang L, Li Y, Liu D, Wang X, Li Z, Jiang J, Xiong Y (2016) Integration of multiple plasmonic and cocatalyst nanostructures on TiO2 nanosheets for visible-near-infrared photocatalytic hydrogen evolution. Small 12(12):1640–1648PubMedCrossRef Jiang W, Bai S, Wang L, Wang X, Yang L, Li Y, Liu D, Wang X, Li Z, Jiang J, Xiong Y (2016) Integration of multiple plasmonic and cocatalyst nanostructures on TiO2 nanosheets for visible-near-infrared photocatalytic hydrogen evolution. Small 12(12):1640–1648PubMedCrossRef
85.
Zurück zum Zitat Meng A, Zhang L, Cheng B, Yu J (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31(30):1807660CrossRef Meng A, Zhang L, Cheng B, Yu J (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31(30):1807660CrossRef
86.
Zurück zum Zitat Zada A, Muhammad P, Ahmad W, Hussain Z, Ali S, Khan M, Khan Q, Maqbool M (2020) Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis, and applications. Adv Funct Mater 30(7):1906744CrossRef Zada A, Muhammad P, Ahmad W, Hussain Z, Ali S, Khan M, Khan Q, Maqbool M (2020) Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis, and applications. Adv Funct Mater 30(7):1906744CrossRef
87.
Zurück zum Zitat Wang P, Huang B, Dai Y, Whangbo MH (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14(28):9813–9825PubMedCrossRef Wang P, Huang B, Dai Y, Whangbo MH (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14(28):9813–9825PubMedCrossRef
88.
Zurück zum Zitat Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon 8(2):95–103CrossRefADS Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon 8(2):95–103CrossRefADS
89.
Zurück zum Zitat Liu C, Dong H, Wu N, Cao Y, Zhang X (2018) Plasmonic resonance energy transfer enhanced photodynamic therapy with Au@ SiO2@ Cu2O/perfluorohexane nanocomposites. ACS Appl Mater Interfaces 10(8):6991–7002PubMedCrossRef Liu C, Dong H, Wu N, Cao Y, Zhang X (2018) Plasmonic resonance energy transfer enhanced photodynamic therapy with Au@ SiO2@ Cu2O/perfluorohexane nanocomposites. ACS Appl Mater Interfaces 10(8):6991–7002PubMedCrossRef
90.
Zurück zum Zitat Liu X, Zhang Y, Liang A, Ding H, Gai H (2019) Plasmonic resonance energy transfer from a Au nanosphere to quantum dots at a single particle level and its homogenous immunoassay. Chem Commun 55(76):11442–11445CrossRef Liu X, Zhang Y, Liang A, Ding H, Gai H (2019) Plasmonic resonance energy transfer from a Au nanosphere to quantum dots at a single particle level and its homogenous immunoassay. Chem Commun 55(76):11442–11445CrossRef
91.
Zurück zum Zitat Abdullah H, Khan MM, Ong HR, Yaakob Z (2017) Modified TiO2 photocatalyst for CO2 photocatalytic reduction: an overview. J CO2 Util 22:15–32CrossRef Abdullah H, Khan MM, Ong HR, Yaakob Z (2017) Modified TiO2 photocatalyst for CO2 photocatalytic reduction: an overview. J CO2 Util 22:15–32CrossRef
92.
Zurück zum Zitat Shehzad N, Tahir M, Johari K, Murugesan T, Hussain M (2018) A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. J CO2 Util 26:98–122CrossRef Shehzad N, Tahir M, Johari K, Murugesan T, Hussain M (2018) A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. J CO2 Util 26:98–122CrossRef
93.
Zurück zum Zitat Tahir M, Tahir B, Amin NA (2015) Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation. Appl Surf Sci 356:1289–1299CrossRefADS Tahir M, Tahir B, Amin NA (2015) Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation. Appl Surf Sci 356:1289–1299CrossRefADS
94.
Zurück zum Zitat Liu E, Fan J, Hu X, Hu Y, Li H, Tang C, Sun L, Wan J (2015) A facile strategy to fabricate plasmonic Au/TiO 2 nano-grass films with overlapping visible light-harvesting structures for H 2 production from water. J Mater Sci 50:2298–2305CrossRefADS Liu E, Fan J, Hu X, Hu Y, Li H, Tang C, Sun L, Wan J (2015) A facile strategy to fabricate plasmonic Au/TiO 2 nano-grass films with overlapping visible light-harvesting structures for H 2 production from water. J Mater Sci 50:2298–2305CrossRefADS
95.
Zurück zum Zitat Liu E, Qi L, Bian J, Chen Y, Hu X, Fan J, Liu H, Zhu C, Wang Q (2015) A facile strategy to fabricate plasmonic Cu modified TiO2 nano-flower films for photocatalytic reduction of CO2 to methanol. Mater Res Bull 68:203–209CrossRef Liu E, Qi L, Bian J, Chen Y, Hu X, Fan J, Liu H, Zhu C, Wang Q (2015) A facile strategy to fabricate plasmonic Cu modified TiO2 nano-flower films for photocatalytic reduction of CO2 to methanol. Mater Res Bull 68:203–209CrossRef
96.
Zurück zum Zitat Tahir M, Tahir B, Amin NA, Alias H (2016) Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst. Appl Surf Sci 389:46–55CrossRefADS Tahir M, Tahir B, Amin NA, Alias H (2016) Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst. Appl Surf Sci 389:46–55CrossRefADS
97.
Zurück zum Zitat Yu B, Zhou Y, Li P, Tu W, Li P, Tang L, Ye J, Zou Z (2016) Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale 8(23):11870–11874PubMedCrossRefADS Yu B, Zhou Y, Li P, Tu W, Li P, Tang L, Ye J, Zou Z (2016) Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale 8(23):11870–11874PubMedCrossRefADS
98.
Zurück zum Zitat Mgolombane M, Bankole OM, Ferg EE, Ogunlaja AS (2021) Construction of Co-doped TiO2/rGO nanocomposites for high-performance photoreduction of CO2 with H2O: comparison of theoretical binding energies and exploration of surface chemistry. Mater Chem Phys 268:124733CrossRef Mgolombane M, Bankole OM, Ferg EE, Ogunlaja AS (2021) Construction of Co-doped TiO2/rGO nanocomposites for high-performance photoreduction of CO2 with H2O: comparison of theoretical binding energies and exploration of surface chemistry. Mater Chem Phys 268:124733CrossRef
99.
Zurück zum Zitat Zhu B, Xia P, Ho W, Yu J (2015) Isoelectric point and adsorption activity of porous g-C3N4. Appl Surf Sci 344:188–195CrossRefADS Zhu B, Xia P, Ho W, Yu J (2015) Isoelectric point and adsorption activity of porous g-C3N4. Appl Surf Sci 344:188–195CrossRefADS
100.
Zurück zum Zitat Tang H, Chang S, Jiang L, Tang G, Liang W (2016) Novel spindle-shaped nanoporous TiO2 coupled graphitic g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Ceram Int 42:18443–18452CrossRef Tang H, Chang S, Jiang L, Tang G, Liang W (2016) Novel spindle-shaped nanoporous TiO2 coupled graphitic g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Ceram Int 42:18443–18452CrossRef
101.
Zurück zum Zitat Tseng IH, Sung YM, Chang PY, Chen CY (2019) Anatase TiO2-decorated graphitic carbon nitride for photocatalytic conversion of carbon dioxide. Polymers 11(1):146PubMedPubMedCentralCrossRef Tseng IH, Sung YM, Chang PY, Chen CY (2019) Anatase TiO2-decorated graphitic carbon nitride for photocatalytic conversion of carbon dioxide. Polymers 11(1):146PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Chen D, Zou L, Li S, Zheng F (2016) Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction. Sci rep 6(1):20335PubMedPubMedCentralCrossRefADS Chen D, Zou L, Li S, Zheng F (2016) Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction. Sci rep 6(1):20335PubMedPubMedCentralCrossRefADS
103.
Zurück zum Zitat Wang W, Wang Z, Liu J, Luo Z, Suib SL, He P, Ding G, Zhang Z, Sun L (2017) Single-step one-pot synthesis of TiO2 nanosheets doped with sulfur on reduced graphene oxide with enhanced photocatalytic activity. Sci rep 7(1):1–9PubMedPubMedCentralADS Wang W, Wang Z, Liu J, Luo Z, Suib SL, He P, Ding G, Zhang Z, Sun L (2017) Single-step one-pot synthesis of TiO2 nanosheets doped with sulfur on reduced graphene oxide with enhanced photocatalytic activity. Sci rep 7(1):1–9PubMedPubMedCentralADS
104.
Zurück zum Zitat Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat mater 10(12):911–921PubMedCrossRefADS Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat mater 10(12):911–921PubMedCrossRefADS
105.
Zurück zum Zitat Olowoyo JO, Kumar M, Singh B, Oninla VO, Babalola JO, Valdés H, Vorontsov AV, Kumar U (2019) Self-assembled reduced graphene oxide-TiO2 nanocomposites: synthesis, DFTB+ calculations, and enhanced photocatalytic reduction of CO2 to methanol. Carbon 147:385–397CrossRef Olowoyo JO, Kumar M, Singh B, Oninla VO, Babalola JO, Valdés H, Vorontsov AV, Kumar U (2019) Self-assembled reduced graphene oxide-TiO2 nanocomposites: synthesis, DFTB+ calculations, and enhanced photocatalytic reduction of CO2 to methanol. Carbon 147:385–397CrossRef
106.
Zurück zum Zitat Wang AX, Kong X (2015) Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering. Materials 8(6):3024–3052PubMedPubMedCentralCrossRefADS Wang AX, Kong X (2015) Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering. Materials 8(6):3024–3052PubMedPubMedCentralCrossRefADS
107.
Zurück zum Zitat Almomani F, Bhosale R, Khraisheh M, Kumar A, Tawalbeh M (2019) Photocatalytic conversion of CO2 and H2O to useful fuels by nanostructured composite catalysis. Appl Surf Sci 483:363–372CrossRefADS Almomani F, Bhosale R, Khraisheh M, Kumar A, Tawalbeh M (2019) Photocatalytic conversion of CO2 and H2O to useful fuels by nanostructured composite catalysis. Appl Surf Sci 483:363–372CrossRefADS
108.
Zurück zum Zitat Cheng M, Bai S, Xia Y, Zhu X, Chen R, Liao Q (2021) Highly efficient photocatalytic conversion of gas phase CO2 by TiO2 nanotube array sensitized with CdS/ZnS quantum dots under visible light. Int J Hydrog Energy 46(62):31634–31646CrossRef Cheng M, Bai S, Xia Y, Zhu X, Chen R, Liao Q (2021) Highly efficient photocatalytic conversion of gas phase CO2 by TiO2 nanotube array sensitized with CdS/ZnS quantum dots under visible light. Int J Hydrog Energy 46(62):31634–31646CrossRef
109.
Zurück zum Zitat Yang X, Chen H, Meng Q, Zheng H, Zhu Y, Li YW (2017) Insights into influence of nanoparticle size and metal–support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation. Catal Sci Technol 7(23):5625–34CrossRef Yang X, Chen H, Meng Q, Zheng H, Zhu Y, Li YW (2017) Insights into influence of nanoparticle size and metal–support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation. Catal Sci Technol 7(23):5625–34CrossRef
110.
Zurück zum Zitat An B, Zhang J, Cheng K, Ji P, Wang C, Lin W (2017) Confinement of ultrasmall cu/zno x nanoparticles in metal–organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc 139(10):3834–3840PubMedCrossRef An B, Zhang J, Cheng K, Ji P, Wang C, Lin W (2017) Confinement of ultrasmall cu/zno x nanoparticles in metal–organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc 139(10):3834–3840PubMedCrossRef
111.
Zurück zum Zitat Wei Z, Rosa L, Wang K, Endo M, Juodkazis S, Ohtani B, Kowalska E (2017) Size-controlled gold nanoparticles on octahedral anatase particles as efficient plasmonic photocatalyst. Appl Catal B Environ 206:393–405CrossRef Wei Z, Rosa L, Wang K, Endo M, Juodkazis S, Ohtani B, Kowalska E (2017) Size-controlled gold nanoparticles on octahedral anatase particles as efficient plasmonic photocatalyst. Appl Catal B Environ 206:393–405CrossRef
112.
Zurück zum Zitat Wei Z, Janczarek M, Endo M, Colbeau-Justin C, Ohtani B, Kowalska E (2018) Silver-modified octahedral anatase particles as plasmonic photocatalyst. Catal Today 310:19–25PubMedPubMedCentralCrossRef Wei Z, Janczarek M, Endo M, Colbeau-Justin C, Ohtani B, Kowalska E (2018) Silver-modified octahedral anatase particles as plasmonic photocatalyst. Catal Today 310:19–25PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Wang ZJ, Song H, Pang H, Ning Y, Dao TD, Wang Z, Chen H, Weng Y, Fu Q, Nagao T, Fang Y (2019) Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Appl Catal B: Environ 250:10–16CrossRef Wang ZJ, Song H, Pang H, Ning Y, Dao TD, Wang Z, Chen H, Weng Y, Fu Q, Nagao T, Fang Y (2019) Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Appl Catal B: Environ 250:10–16CrossRef
114.
Zurück zum Zitat Angulo-Ibáñez A, Goitandia AM, Albo J, Aranzabe E, Beobide G, Castillo O, Pérez-Yáñez S (2021) Porous TiO2 thin film-based photocatalytic windows for an enhanced operation of optofluidic microreactors in CO2 conversion. Iscience 24(6):102654PubMedPubMedCentralCrossRefADS Angulo-Ibáñez A, Goitandia AM, Albo J, Aranzabe E, Beobide G, Castillo O, Pérez-Yáñez S (2021) Porous TiO2 thin film-based photocatalytic windows for an enhanced operation of optofluidic microreactors in CO2 conversion. Iscience 24(6):102654PubMedPubMedCentralCrossRefADS
115.
Zurück zum Zitat Otgonbayar Z, Liu Y, Cho KY, Jung CH, Oh WC (2021) Novel ternary composite of LaYAgO4 and TiO2 united with graphene and its complement: Photocatalytic performance of CO2 reduction into methanol. Mater Sci Semicond Process 121:105456CrossRef Otgonbayar Z, Liu Y, Cho KY, Jung CH, Oh WC (2021) Novel ternary composite of LaYAgO4 and TiO2 united with graphene and its complement: Photocatalytic performance of CO2 reduction into methanol. Mater Sci Semicond Process 121:105456CrossRef
116.
Zurück zum Zitat Bharath G, Prakash J, Rambabu K, Venkatasubbu GD, Kumar A, Lee S, Theerthagiri J, Choi MY, Banat F (2021) Synthesis of TiO2/RGO with plasmonic Ag nanoparticles for highly efficient photoelectrocatalytic reduction of CO2 to methanol toward the removal of an organic pollutant from the atmosphere. Environ Pollut 281:116990PubMedCrossRef Bharath G, Prakash J, Rambabu K, Venkatasubbu GD, Kumar A, Lee S, Theerthagiri J, Choi MY, Banat F (2021) Synthesis of TiO2/RGO with plasmonic Ag nanoparticles for highly efficient photoelectrocatalytic reduction of CO2 to methanol toward the removal of an organic pollutant from the atmosphere. Environ Pollut 281:116990PubMedCrossRef
117.
Zurück zum Zitat Tahir M (2020) Well-designed ZnFe2O4/Ag/TiO2 nanorods heterojunction with Ag as electron mediator for photocatalytic CO2 reduction to fuels under UV/visible light. J CO2 Util 37:134–46CrossRef Tahir M (2020) Well-designed ZnFe2O4/Ag/TiO2 nanorods heterojunction with Ag as electron mediator for photocatalytic CO2 reduction to fuels under UV/visible light. J CO2 Util 37:134–46CrossRef
Metadaten
Titel
Plasmonic-Based TiO2 and TiO2 Nanoparticles for Photocatalytic CO2 to Methanol Conversion in Energy Applications: Current Status and Future Prospects
verfasst von
Subhendu Chakroborty
Nibedita Nath
Siba Soren
Arundhati Barik
Kirtanjot Kaur
Publikationsdatum
29.04.2023
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 1-4/2024
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-023-01816-5

Weitere Artikel der Ausgabe 1-4/2024

Topics in Catalysis 1-4/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.