Skip to main content
Erschienen in: International Journal of Computer Vision 12/2018

27.07.2017

Feedback and Surround Modulated Boundary Detection

verfasst von: Arash Akbarinia, C. Alejandro Parraga

Erschienen in: International Journal of Computer Vision | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Edges are key components of any visual scene to the extent that we can recognise objects merely by their silhouettes. The human visual system captures edge information through neurons in the visual cortex that are sensitive to both intensity discontinuities and particular orientations. The “classical approach” assumes that these cells are only responsive to the stimulus present within their receptive fields, however, recent studies demonstrate that surrounding regions and inter-areal feedback connections influence their responses significantly. In this work we propose a biologically-inspired edge detection model in which orientation selective neurons are represented through the first derivative of a Gaussian function resembling double-opponent cells in the primary visual cortex (V1). In our model we account for four kinds of receptive field surround, i.e. full, far, iso- and orthogonal-orientation, whose contributions are contrast-dependant. The output signal from V1 is pooled in its perpendicular direction by larger V2 neurons employing a contrast-variant centre-surround kernel. We further introduce a feedback connection from higher-level visual areas to the lower ones. The results of our model on three benchmark datasets show a big improvement compared to the current non-learning and biologically-inspired state-of-the-art algorithms while being competitive to the learning-based methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The source code and all the experimental materials are available at https://​github.​com/​ArashAkbarinia/​BoundaryDetectio​n.
 
Literatur
Zurück zum Zitat Akbarinia, A., & Parraga, C. A. (2016). Biologically plausible boundary detection. In: Proceedings of the British Machine Vision Conference (BMVC), BMVA Press. Akbarinia, A., & Parraga, C. A. (2016). Biologically plausible boundary detection. In: Proceedings of the British Machine Vision Conference (BMVC), BMVA Press.
Zurück zum Zitat Angelucci, A., & Shushruth, S. (2014). Beyond the classical receptive field: Surround modulation in primary visual cortex. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 425–444). Cambridge: MIT Press. Angelucci, A., & Shushruth, S. (2014). Beyond the classical receptive field: Surround modulation in primary visual cortex. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 425–444). Cambridge: MIT Press.
Zurück zum Zitat Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 898–916.CrossRef Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 898–916.CrossRef
Zurück zum Zitat Bertasius, G., Shi, J., & Torresani, L. (2015a). Deepedge: A multi-scale bifurcated deep network for top–down contour detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4380–4389. Bertasius, G., Shi, J., & Torresani, L. (2015a). Deepedge: A multi-scale bifurcated deep network for top–down contour detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4380–4389.
Zurück zum Zitat Bertasius, G., Shi, J., & Torresani, L. (2015b). High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision. In Proceedings of the IEEE International Conference on Computer Vision, pp. 504–512. Bertasius, G., Shi, J., & Torresani, L. (2015b). High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision. In Proceedings of the IEEE International Conference on Computer Vision, pp. 504–512.
Zurück zum Zitat Briggs, F., & Martin, U. (2014). Functional properties of cortical feedback to the primate lateral geniculate nucleus. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 315–322). Cambridge: MIT Press. Briggs, F., & Martin, U. (2014). Functional properties of cortical feedback to the primate lateral geniculate nucleus. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 315–322). Cambridge: MIT Press.
Zurück zum Zitat Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 679–698.CrossRef Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 679–698.CrossRef
Zurück zum Zitat Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.CrossRef Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.CrossRef
Zurück zum Zitat Cour, T., Benezit, F., & Shi, J. (2005). Spectral segmentation with multiscale graph decomposition. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, IEEE, vol. 2, pp. 1124–1131. Cour, T., Benezit, F., & Shi, J. (2005). Spectral segmentation with multiscale graph decomposition. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, IEEE, vol. 2, pp. 1124–1131.
Zurück zum Zitat Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, IEEE, vol. 1, pp. 886–893. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, IEEE, vol. 1, pp. 886–893.
Zurück zum Zitat Díaz-Pernas, F. J., Martínez-Zarzuela, M., Antón-Rodríguez, M., & González-Ortega, D. (2014). Double recurrent interaction v1-v2-v4 based neural architecture for color natural scene boundary detection and surface perception. Applied Soft Computing, 21, 250–264.CrossRef Díaz-Pernas, F. J., Martínez-Zarzuela, M., Antón-Rodríguez, M., & González-Ortega, D. (2014). Double recurrent interaction v1-v2-v4 based neural architecture for color natural scene boundary detection and surface perception. Applied Soft Computing, 21, 250–264.CrossRef
Zurück zum Zitat Dollár, P., & Zitnick, C. L. (2015). Fast edge detection using structured forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8), 1558–1570.CrossRef Dollár, P., & Zitnick, C. L. (2015). Fast edge detection using structured forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8), 1558–1570.CrossRef
Zurück zum Zitat Dollar, P., Tu, Z., & Belongie, S. (2006). Supervised learning of edges and object boundaries. In Computer Vision and Pattern Recognition, 2006. IEEE Computer Society Conference on, IEEE, vol. 2, pp. 1964–1971. Dollar, P., Tu, Z., & Belongie, S. (2006). Supervised learning of edges and object boundaries. In Computer Vision and Pattern Recognition, 2006. IEEE Computer Society Conference on, IEEE, vol. 2, pp. 1964–1971.
Zurück zum Zitat Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78–87.CrossRef Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78–87.CrossRef
Zurück zum Zitat Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2), 167–181.CrossRef Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2), 167–181.CrossRef
Zurück zum Zitat Field, D. J., Golden, J. R., & Hayes, A. (2014). Contour integration and the association field. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 627–638). Cambridge: MIT Press. Field, D. J., Golden, J. R., & Hayes, A. (2014). Contour integration and the association field. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 627–638). Cambridge: MIT Press.
Zurück zum Zitat Freeman, J., Ziemba, C. M., Heeger, D. J., Simoncelli, E. P., & Movshon, J. A. (2013). A functional and perceptual signature of the second visual area in primates. Nature Neuroscience, 16(7), 974–981.CrossRef Freeman, J., Ziemba, C. M., Heeger, D. J., Simoncelli, E. P., & Movshon, J. A. (2013). A functional and perceptual signature of the second visual area in primates. Nature Neuroscience, 16(7), 974–981.CrossRef
Zurück zum Zitat Fu, H., Wang, C., Tao, D., & Black, M. J. (2016). Occlusion boundary detection via deep exploration of context. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 241–250. Fu, H., Wang, C., Tao, D., & Black, M. J. (2016). Occlusion boundary detection via deep exploration of context. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 241–250.
Zurück zum Zitat Gao, S., Yang, K., Li, C., & Li, Y. (2013). A color constancy model with double-opponency mechanisms. In Proceedings of the IEEE International Conference on Computer Vision, pp. 929–936. Gao, S., Yang, K., Li, C., & Li, Y. (2013). A color constancy model with double-opponency mechanisms. In Proceedings of the IEEE International Conference on Computer Vision, pp. 929–936.
Zurück zum Zitat Georgeson, M. A., & Meese, T. S. (1997). Perception of stationary plaids: The role of spatial filters in edge analysis. Vision Research, 37(23), 3255–3271.CrossRef Georgeson, M. A., & Meese, T. S. (1997). Perception of stationary plaids: The role of spatial filters in edge analysis. Vision Research, 37(23), 3255–3271.CrossRef
Zurück zum Zitat Grigorescu, C., Petkov, N., & Westenberg, M. A. (2003). Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Processing, 12(7), 729–739.CrossRef Grigorescu, C., Petkov, N., & Westenberg, M. A. (2003). Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Processing, 12(7), 729–739.CrossRef
Zurück zum Zitat Hansen, T., & Neumann, H. (2008). A recurrent model of contour integration in primary visual cortex. Journal of Vision, 8(8), 8–8.CrossRef Hansen, T., & Neumann, H. (2008). A recurrent model of contour integration in primary visual cortex. Journal of Vision, 8(8), 8–8.CrossRef
Zurück zum Zitat Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9(02), 181–197.CrossRef Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9(02), 181–197.CrossRef
Zurück zum Zitat Hess, R. F. (2014). Spatial scale in visual processing. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 595–615). Cambridge: MIT Press. Hess, R. F. (2014). Spatial scale in visual processing. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 595–615). Cambridge: MIT Press.
Zurück zum Zitat Hoiem, D., Stein, A. N., Efros, A. A., & Hebert, M. (2007). Recovering occlusion boundaries from a single image. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, IEEE, pp. 1–8. Hoiem, D., Stein, A. N., Efros, A. A., & Hebert, M. (2007). Recovering occlusion boundaries from a single image. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, IEEE, pp. 1–8.
Zurück zum Zitat Hupe, J., James, A., Payne, B., Lomber, S., Girard, P., & Bullier, J. (1998). Cortical feedback improves discrimination between figure and background by v1, v2 and v3 neurons. Nature, 394(6695), 784–787.CrossRef Hupe, J., James, A., Payne, B., Lomber, S., Girard, P., & Bullier, J. (1998). Cortical feedback improves discrimination between figure and background by v1, v2 and v3 neurons. Nature, 394(6695), 784–787.CrossRef
Zurück zum Zitat Ichida, J. M., Schwabe, L., Bressloff, P. C., & Angelucci, A. (2007). Response facilitation from the suppressive receptive field surround of macaque v1 neurons. Journal of Neurophysiology, 98(4), 2168–2181.CrossRef Ichida, J. M., Schwabe, L., Bressloff, P. C., & Angelucci, A. (2007). Response facilitation from the suppressive receptive field surround of macaque v1 neurons. Journal of Neurophysiology, 98(4), 2168–2181.CrossRef
Zurück zum Zitat Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (1999). Dynamics of spatial summation in primary visual cortex of alert monkeys. Proceedings of the National Academy of Sciences, 96(21), 12073–12078.CrossRef Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (1999). Dynamics of spatial summation in primary visual cortex of alert monkeys. Proceedings of the National Academy of Sciences, 96(21), 12073–12078.CrossRef
Zurück zum Zitat Kivinen, J. J., Williams, C. K., Heess, N., & Technologies, D. (2014). Visual boundary prediction: A deep neural prediction network and quality dissection. AISTATS, 1, 9. Kivinen, J. J., Williams, C. K., Heess, N., & Technologies, D. (2014). Visual boundary prediction: A deep neural prediction network and quality dissection. AISTATS, 1, 9.
Zurück zum Zitat Koenderink, J. J., & Van Doorn, A. J. (1982). The shape of smooth objects and the way contours end. Perception, 11(2), 129–137.CrossRef Koenderink, J. J., & Van Doorn, A. J. (1982). The shape of smooth objects and the way contours end. Perception, 11(2), 129–137.CrossRef
Zurück zum Zitat Landy, M. S. (2014). Texture analysis and perception. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 639–652). Cambridge: MIT Press. Landy, M. S. (2014). Texture analysis and perception. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 639–652). Cambridge: MIT Press.
Zurück zum Zitat LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.CrossRef LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.CrossRef
Zurück zum Zitat Loffler, G. (2008). Perception of contours and shapes: Low and intermediate stage mechanisms. Vision Research, 48(20), 2106–2127.CrossRef Loffler, G. (2008). Perception of contours and shapes: Low and intermediate stage mechanisms. Vision Research, 48(20), 2106–2127.CrossRef
Zurück zum Zitat Malach, R., Amir, Y., Harel, M., & Grinvald, A. (1993). Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proceedings of the National Academy of Sciences, 90(22), 10469–10473.CrossRef Malach, R., Amir, Y., Harel, M., & Grinvald, A. (1993). Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proceedings of the National Academy of Sciences, 90(22), 10469–10473.CrossRef
Zurück zum Zitat Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London B: Biological Sciences, 207(1167), 187–217.CrossRef Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London B: Biological Sciences, 207(1167), 187–217.CrossRef
Zurück zum Zitat Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, IEEE, vol. 2, pp. 416–423. Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, IEEE, vol. 2, pp. 416–423.
Zurück zum Zitat Mély, D. A., Kim, J., McGill, M., Guo, Y., & Serre, T. (2016). A systematic comparison between visual cues for boundary detection. Vision Research, 120, 93–107.CrossRef Mély, D. A., Kim, J., McGill, M., Guo, Y., & Serre, T. (2016). A systematic comparison between visual cues for boundary detection. Vision Research, 120, 93–107.CrossRef
Zurück zum Zitat Morrone, M. C., & Burr, D. (1988). Feature detection in human vision: A phase-dependent energy model. Proceedings of the Royal Society of London B: Biological Sciences, 235(1280), 221–245.CrossRef Morrone, M. C., & Burr, D. (1988). Feature detection in human vision: A phase-dependent energy model. Proceedings of the Royal Society of London B: Biological Sciences, 235(1280), 221–245.CrossRef
Zurück zum Zitat O’Herron, P., & von der Heydt, R. (2011). Representation of object continuity in the visual cortex. Journal of Vision, 11(2), 12–12.CrossRef O’Herron, P., & von der Heydt, R. (2011). Representation of object continuity in the visual cortex. Journal of Vision, 11(2), 12–12.CrossRef
Zurück zum Zitat Papari, G., & Petkov, N. (2011). Edge and line oriented contour detection: State of the art. Image and Vision Computing, 29(2), 79–103.CrossRef Papari, G., & Petkov, N. (2011). Edge and line oriented contour detection: State of the art. Image and Vision Computing, 29(2), 79–103.CrossRef
Zurück zum Zitat Parraga, C. A., & Akbarinia, A. (2016). Colour constancy as a product of dynamic centre-surround adaptation. Journal of Vision, 16(12), 214–214.CrossRef Parraga, C. A., & Akbarinia, A. (2016). Colour constancy as a product of dynamic centre-surround adaptation. Journal of Vision, 16(12), 214–214.CrossRef
Zurück zum Zitat Poirier, F., & Wilson, H. R. (2006). A biologically plausible model of human radial frequency perception. Vision Research, 46(15), 2443–2455.CrossRef Poirier, F., & Wilson, H. R. (2006). A biologically plausible model of human radial frequency perception. Vision Research, 46(15), 2443–2455.CrossRef
Zurück zum Zitat Prewitt, J. M. (1970). Object enhancement and extraction. Picture Processing and Psychopictorics, 10(1), 15–19. Prewitt, J. M. (1970). Object enhancement and extraction. Picture Processing and Psychopictorics, 10(1), 15–19.
Zurück zum Zitat Shapley, R., & Hawken, M. J. (2011). Color in the cortex: Single-and double-opponent cells. Vision Research, 51(7), 701–717.CrossRef Shapley, R., & Hawken, M. J. (2011). Color in the cortex: Single-and double-opponent cells. Vision Research, 51(7), 701–717.CrossRef
Zurück zum Zitat Shen, W., Wang, X., Wang, Y., Bai, X., & Zhang, Z. (2015). Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3982–3991. Shen, W., Wang, X., Wang, Y., Bai, X., & Zhang, Z. (2015). Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3982–3991.
Zurück zum Zitat Shushruth, S., Ichida, J. M., Levitt, J. B., & Angelucci, A. (2009). Comparison of spatial summation properties of neurons in macaque v1 and v2. Journal of Neurophysiology, 102(4), 2069–2083.CrossRef Shushruth, S., Ichida, J. M., Levitt, J. B., & Angelucci, A. (2009). Comparison of spatial summation properties of neurons in macaque v1 and v2. Journal of Neurophysiology, 102(4), 2069–2083.CrossRef
Zurück zum Zitat Shushruth, S., Nurminen, L., Bijanzadeh, M., Ichida, J. M., Vanni, S., & Angelucci, A. (2013). Different orientation tuning of near-and far-surround suppression in macaque primary visual cortex mirrors their tuning in human perception. The Journal of Neuroscience, 33(1), 106–119.CrossRef Shushruth, S., Nurminen, L., Bijanzadeh, M., Ichida, J. M., Vanni, S., & Angelucci, A. (2013). Different orientation tuning of near-and far-surround suppression in macaque primary visual cortex mirrors their tuning in human perception. The Journal of Neuroscience, 33(1), 106–119.CrossRef
Zurück zum Zitat Spillmann, L., Dresp-Langley, B., & Tseng, Ch. (2015). Beyond the classical receptive field: The effect of contextual stimuli. Journal of Vision, 15(9), 1–23.CrossRef Spillmann, L., Dresp-Langley, B., & Tseng, Ch. (2015). Beyond the classical receptive field: The effect of contextual stimuli. Journal of Vision, 15(9), 1–23.CrossRef
Zurück zum Zitat Spratling, M. W. (2013). Image segmentation using a sparse coding model of cortical area v1. IEEE Transactions on Image Processing, 22(4), 1631–1643.MathSciNetCrossRef Spratling, M. W. (2013). Image segmentation using a sparse coding model of cortical area v1. IEEE Transactions on Image Processing, 22(4), 1631–1643.MathSciNetCrossRef
Zurück zum Zitat Thériault, C., Thome, N., & Cord, M. (2015). Cortical networks of visual recognition. In G. Cristóbal, L. Perrinet, & M. S. Keil (Eds.), Biologically inspired computer vision: Fundamentals and applications. Wiley-VCH Verlag GmbH & Co. KGaA. Thériault, C., Thome, N., & Cord, M. (2015). Cortical networks of visual recognition. In G. Cristóbal, L. Perrinet, & M. S. Keil (Eds.), Biologically inspired computer vision: Fundamentals and applications. Wiley-VCH Verlag GmbH & Co. KGaA.
Zurück zum Zitat Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In Computer Vision, 1998. Sixth International Conference on, IEEE, pp. 839–846. Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In Computer Vision, 1998. Sixth International Conference on, IEEE, pp. 839–846.
Zurück zum Zitat Tzvetanov, T., & Dresp, B. (2002). Short-and long-range effects in line contrast integration. Vision Research, 42(22), 2493–2498.CrossRef Tzvetanov, T., & Dresp, B. (2002). Short-and long-range effects in line contrast integration. Vision Research, 42(22), 2493–2498.CrossRef
Zurück zum Zitat Van De Weijer, J., Gevers, T., & Gijsenij, A. (2007). Edge-based color constancy. IEEE Transactions on image processing, 16(9), 2207–2214.MathSciNetCrossRef Van De Weijer, J., Gevers, T., & Gijsenij, A. (2007). Edge-based color constancy. IEEE Transactions on image processing, 16(9), 2207–2214.MathSciNetCrossRef
Zurück zum Zitat Walther, D. B., Chai, B., Caddigan, E., Beck, D. M., & Fei-Fei, L. (2011). Simple line drawings suffice for functional mri decoding of natural scene categories. Proceedings of the National Academy of Sciences, 108(23), 9661–9666.CrossRef Walther, D. B., Chai, B., Caddigan, E., Beck, D. M., & Fei-Fei, L. (2011). Simple line drawings suffice for functional mri decoding of natural scene categories. Proceedings of the National Academy of Sciences, 108(23), 9661–9666.CrossRef
Zurück zum Zitat Watt, R., & Morgan, M. (1985). A theory of the primitive spatial code in human vision. Vision Research, 25(11), 1661–1674.CrossRef Watt, R., & Morgan, M. (1985). A theory of the primitive spatial code in human vision. Vision Research, 25(11), 1661–1674.CrossRef
Zurück zum Zitat Wei, H., Lang, B., & Zuo, Q. (2013). Contour detection model with multi-scale integration based on non-classical receptive field. Neurocomputing, 103, 247–262.CrossRef Wei, H., Lang, B., & Zuo, Q. (2013). Contour detection model with multi-scale integration based on non-classical receptive field. Neurocomputing, 103, 247–262.CrossRef
Zurück zum Zitat Wilson, H., & Wilkinson, F. (2014). Configural pooling in the ventral pathway. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 617–626). Cambridge: MIT Press. Wilson, H., & Wilkinson, F. (2014). Configural pooling in the ventral pathway. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 617–626). Cambridge: MIT Press.
Zurück zum Zitat Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403. Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403.
Zurück zum Zitat Yang, K., Gao, S., Li, C., & Li, Y. (2013). Efficient color boundary detection with color-opponent mechanisms. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2810–2817. Yang, K., Gao, S., Li, C., & Li, Y. (2013). Efficient color boundary detection with color-opponent mechanisms. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2810–2817.
Zurück zum Zitat Yang, K. F., Li, C. Y., & Li, Y. J. (2014). Multifeature-based surround inhibition improves contour detection in natural images. IEEE Transactions on Image Processing, 23(12), 5020–5032.MathSciNetCrossRef Yang, K. F., Li, C. Y., & Li, Y. J. (2014). Multifeature-based surround inhibition improves contour detection in natural images. IEEE Transactions on Image Processing, 23(12), 5020–5032.MathSciNetCrossRef
Zurück zum Zitat Yang, K. F., Gao, S. B., Guo, C. F., Li, C. Y., & Li, Y. J. (2015). Boundary detection using double-opponency and spatial sparseness constraint. IEEE Transactions on Image Processing, 24(8), 2565–2578.MathSciNetCrossRef Yang, K. F., Gao, S. B., Guo, C. F., Li, C. Y., & Li, Y. J. (2015). Boundary detection using double-opponency and spatial sparseness constraint. IEEE Transactions on Image Processing, 24(8), 2565–2578.MathSciNetCrossRef
Zurück zum Zitat Zeki, S. (1993). A vision of the brain. Oxford: Oxford University Press. Zeki, S. (1993). A vision of the brain. Oxford: Oxford University Press.
Metadaten
Titel
Feedback and Surround Modulated Boundary Detection
verfasst von
Arash Akbarinia
C. Alejandro Parraga
Publikationsdatum
27.07.2017
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 12/2018
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-017-1035-5

Weitere Artikel der Ausgabe 12/2018

International Journal of Computer Vision 12/2018 Zur Ausgabe

Premium Partner