Skip to main content
Erschienen in: Water Resources Management 12/2014

01.09.2014

Investigation of Empirical Mode Decomposition in Forecasting of Hydrological Time Series

verfasst von: Ozgur Kisi, Levent Latifoğlu, Fatma Latifoğlu

Erschienen in: Water Resources Management | Ausgabe 12/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, a nonparametric technique to set up a river stage forecasting model based on empirical mode decomposition (EMD) is presented. The approach is based on the use of the EMD and artificial neural networks (ANN) to forecast next month’s monthly streamflows. The proposed approach is applied to a real case study. The data from station on the Kizilirmak River in Turkey was used. The mean square errors (MSE), mean absolute errors (MAE) and correlation coefficient (R) statistics were used for evaluating the accuracy of the EMD-ANN model. The accuracy of the EMD-ANN model was then compared to the artificial neural networks (ANN) model. The results showed that EMD-ANN approach performed better than the ANN in predicting stream flows. The most accurate EMD-ANN model had MSE = 0.0132, MAE = 0.0883 and R = 0.8012 statistics, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alvisi S, Franchini M (2011) Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ Model Softw 26:523–537CrossRef Alvisi S, Franchini M (2011) Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ Model Softw 26:523–537CrossRef
Zurück zum Zitat D.R Brillinger, and P.R. Krishnaiah, “Time Series in the Frequency Domain”, Amsterdam: North Holland, 1983. D.R Brillinger, and P.R. Krishnaiah, “Time Series in the Frequency Domain”, Amsterdam: North Holland, 1983.
Zurück zum Zitat Ch S, Anand N, Panigrahi BK, Mathur S (2013) Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 101:18–23CrossRef Ch S, Anand N, Panigrahi BK, Mathur S (2013) Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 101:18–23CrossRef
Zurück zum Zitat Chauhan S, Shrivastava RK (2009) Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour Manag 23(5):825–837 Chauhan S, Shrivastava RK (2009) Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour Manag 23(5):825–837
Zurück zum Zitat Chen C, Lai MC, Yeh CC (2012) Forecasting tourism demand based on empirical mode decomposition and neural network. Knowl-Based Syst 26:281–287CrossRef Chen C, Lai MC, Yeh CC (2012) Forecasting tourism demand based on empirical mode decomposition and neural network. Knowl-Based Syst 26:281–287CrossRef
Zurück zum Zitat Cheng JS, Yu DJ, Yang Y (2004) Energy operator demodulating approach based on EMD and its application in mechanical fault diagnosis. Chin J Mech Eng 40(8):115–118CrossRef Cheng JS, Yu DJ, Yang Y (2004) Energy operator demodulating approach based on EMD and its application in mechanical fault diagnosis. Chin J Mech Eng 40(8):115–118CrossRef
Zurück zum Zitat Citakoglu H, Cobaner M, Haktanir T, Kisi O (2014) Estimation of long-term monthly reference evapotranspiration in Turkey. Water Resour Manag 28:99–113 Citakoglu H, Cobaner M, Haktanir T, Kisi O (2014) Estimation of long-term monthly reference evapotranspiration in Turkey. Water Resour Manag 28:99–113
Zurück zum Zitat Guo J, Zhou J, Qin H, Zou Q, Li Q (2011) Monthly streamflow forecasting based on improved support vector machine model. Expert Syst Appl 38:13073–13081CrossRef Guo J, Zhou J, Qin H, Zou Q, Li Q (2011) Monthly streamflow forecasting based on improved support vector machine model. Expert Syst Appl 38:13073–13081CrossRef
Zurück zum Zitat Haykin S (1999) “Neural network: a comprehensive foundation”. Prentice-Hall, Englewood Cliffs, NJ Haykin S (1999) “Neural network: a comprehensive foundation”. Prentice-Hall, Englewood Cliffs, NJ
Zurück zum Zitat Hipel KW, McLeod AI (1994) Time Series Modelling of Water Resources and Environmental Systems. Elsevier, Amsterdam Hipel KW, McLeod AI (1994) Time Series Modelling of Water Resources and Environmental Systems. Elsevier, Amsterdam
Zurück zum Zitat N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis”, in: Proceedings of the royal society of London series a–mathematical physical and engineering sciences, series A, 454 903–995, 1998 N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis”, in: Proceedings of the royal society of London series a–mathematical physical and engineering sciences, series A, 454 903–995, 1998
Zurück zum Zitat Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev Fluid Mech 31:417–457CrossRef Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev Fluid Mech 31:417–457CrossRef
Zurück zum Zitat Huang Y, Schmitt FG, Lu Z, Liu Y (2009a) Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. J Hydrol 373:103–111CrossRef Huang Y, Schmitt FG, Lu Z, Liu Y (2009a) Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. J Hydrol 373:103–111CrossRef
Zurück zum Zitat Huang FG, Schmitt Z, Lu Y, Liu (2009b) Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. J Hydrol 373:103–111CrossRef Huang FG, Schmitt Z, Lu Y, Liu (2009b) Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. J Hydrol 373:103–111CrossRef
Zurück zum Zitat Katambara Z, Ndiritu J (2009) A fuzzy inference system for modelling streamflow: Case of Letaba River, South Africa. Phys Chem Earth 34:688–700 Katambara Z, Ndiritu J (2009) A fuzzy inference system for modelling streamflow: Case of Letaba River, South Africa. Phys Chem Earth 34:688–700
Zurück zum Zitat Kim S, Shiri J, Kisi O (2012) Pan evaporation modeling using neural computing approach for different climatic zones. Water Resour Manag 26(11):3231–3249 Kim S, Shiri J, Kisi O (2012) Pan evaporation modeling using neural computing approach for different climatic zones. Water Resour Manag 26(11):3231–3249
Zurück zum Zitat Kim S, Shiri J, Kisi O, Singh VP (2013) Estimating daily pan evaporation using different data-driven methods and lag-time patterns. Water Resour Manag 27(7):2267–2286 Kim S, Shiri J, Kisi O, Singh VP (2013) Estimating daily pan evaporation using different data-driven methods and lag-time patterns. Water Resour Manag 27(7):2267–2286
Zurück zum Zitat Kim S, Singh VP, Seo Y, Kim HS (2014) Modeling nonlinear monthly evapotranspiration using soft computing and data reconstruction techniques. Water Resour Manag 28(1):185–206 Kim S, Singh VP, Seo Y, Kim HS (2014) Modeling nonlinear monthly evapotranspiration using soft computing and data reconstruction techniques. Water Resour Manag 28(1):185–206
Zurück zum Zitat Kisi O (2004a) Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrol Sci J 49(6):1025–1040CrossRef Kisi O (2004a) Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrol Sci J 49(6):1025–1040CrossRef
Zurück zum Zitat Kisi O (2004b) River flow modeling using artificial neural networks. J Hydrol Eng 9(1):60–63CrossRef Kisi O (2004b) River flow modeling using artificial neural networks. J Hydrol Eng 9(1):60–63CrossRef
Zurück zum Zitat Kisi O (2008) River flow forecasting and estimation using different artificial neural network techniques. Hydrol Res 39(1):27–40CrossRef Kisi O (2008) River flow forecasting and estimation using different artificial neural network techniques. Hydrol Res 39(1):27–40CrossRef
Zurück zum Zitat Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399:132–140CrossRef Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399:132–140CrossRef
Zurück zum Zitat S. Kumar, “Neural Networks: A Classroom Approach”, McGraw-Hill Education, 2005 S. Kumar, “Neural Networks: A Classroom Approach”, McGraw-Hill Education, 2005
Zurück zum Zitat Lin CS, Chiu SH, Lin TY (2012) Empirical mode decomposition–based least squares support vector regression for foreign exchange rate forecasting. Econ Model 29:2583–2590CrossRef Lin CS, Chiu SH, Lin TY (2012) Empirical mode decomposition–based least squares support vector regression for foreign exchange rate forecasting. Econ Model 29:2583–2590CrossRef
Zurück zum Zitat D. Machiwal, M. K. Jha, “Hydrologic Time Series Analysis: Theory and Practice”, Springer, 2012 D. Machiwal, M. K. Jha, “Hydrologic Time Series Analysis: Theory and Practice”, Springer, 2012
Zurück zum Zitat Mohammad A (2013) Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Compt Rendus Geosci 54:1–8 Mohammad A (2013) Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Compt Rendus Geosci 54:1–8
Zurück zum Zitat Napolitano G, Serinaldi F, See L (2011) Impact of EMD decomposition and random initialization of weights in ANN hindcasting of daily stream flow series: An empirical examination. J Hydrol 406:199–214CrossRef Napolitano G, Serinaldi F, See L (2011) Impact of EMD decomposition and random initialization of weights in ANN hindcasting of daily stream flow series: An empirical examination. J Hydrol 406:199–214CrossRef
Zurück zum Zitat Partal T, Kisi O (2007) Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J Hydrol 342:199–212CrossRef Partal T, Kisi O (2007) Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J Hydrol 342:199–212CrossRef
Zurück zum Zitat Y.F. Sang, Z. Wanga, C. Liu, “Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis”, Journal of Hydrology 424–425, pp.154–164, 2012 Y.F. Sang, Z. Wanga, C. Liu, “Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis”, Journal of Hydrology 424–425, pp.154–164, 2012
Zurück zum Zitat Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441CrossRef Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441CrossRef
Zurück zum Zitat H.T. Vincent, S.-L.J. Hu, Z. Hou, Damage detection using empirical mode decomposition method and a comparison with wavelet analysis, in: Proceedings of the second international workshop on structural health monitoring, Stanford pp. 891–900, 1999 H.T. Vincent, S.-L.J. Hu, Z. Hou, Damage detection using empirical mode decomposition method and a comparison with wavelet analysis, in: Proceedings of the second international workshop on structural health monitoring, Stanford pp. 891–900, 1999
Zurück zum Zitat Wang W, Van Gelder P (2006) JK. Vrijling, J. Ma, “Forecasting daily streamflow using hybrid ANN models”. J Hydrol 324:383–399CrossRef Wang W, Van Gelder P (2006) JK. Vrijling, J. Ma, “Forecasting daily streamflow using hybrid ANN models”. J Hydrol 324:383–399CrossRef
Zurück zum Zitat Wei Y, Chen MC (2012) Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp Res C 21:148–162CrossRef Wei Y, Chen MC (2012) Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp Res C 21:148–162CrossRef
Zurück zum Zitat Yegnanarayana, “Artificial Neural Networks”, Prentice Hall of India, 2006 Yegnanarayana, “Artificial Neural Networks”, Prentice Hall of India, 2006
Metadaten
Titel
Investigation of Empirical Mode Decomposition in Forecasting of Hydrological Time Series
verfasst von
Ozgur Kisi
Levent Latifoğlu
Fatma Latifoğlu
Publikationsdatum
01.09.2014
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 12/2014
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-014-0726-8

Weitere Artikel der Ausgabe 12/2014

Water Resources Management 12/2014 Zur Ausgabe