Skip to main content
Erschienen in: Water Resources Management 3/2022

03.02.2022

Green Roof Hydrological Modelling With GRU and LSTM Networks

verfasst von: Haowen Xie, Mark Randall, Kwok-wing Chau

Erschienen in: Water Resources Management | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Green Roofs (GRs) are increasing in popularity due to their ability to manage roof runoff while providing a number of additional ecosystem services. Improvement of hydrological models for the simulation of GRs will aid design of individual roofs as well as city scale planning that relies on the predicted impacts of widespread GR implementation. Machine learning (ML) has exploded in popularity in recent years, however there are no studies focusing on the use of ML in hydrological simulation of GRs. We focus on two types of ML-based model: long short-term memory (LSTM) and gated recurrent unit (GRU), in modelling GRs hydrological performance, with sequence input andsingle output (SISO), and synced sequence input and output (SSIO) architectures. Results of this paper indicate that both LSTM and GRU are useful tools for GR modelling. As the time window length (memory length, time step length of input data) increases, SISO appears to have a higher overall forecast accuracy. SSIO delivers the best overall performance, when the SSIO is close to, or even exceeds, the maximum window size.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Hasan M, Van Essen BC, Awwal AAS, Asari VK (2019) A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3) Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Hasan M, Van Essen BC, Awwal AAS, Asari VK (2019) A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3)
Zurück zum Zitat Apaydin H, Feizi H, Sattari MT, Colak MS, Shamshirband S, Chau KW (2020) Comparative analysis of recurrent neural network architectures for reservoir inflow forecasting. Water 12(5) Apaydin H, Feizi H, Sattari MT, Colak MS, Shamshirband S, Chau KW (2020) Comparative analysis of recurrent neural network architectures for reservoir inflow forecasting. Water 12(5)
Zurück zum Zitat Asadi A, Arefi H, Fathipoor H (2020) Simulation of green roofs and their potential mitigating effects on the urban heat island using an artificial neural network: A case study in Austin Texas. Adv Space Res 66(8):1846–1862CrossRef Asadi A, Arefi H, Fathipoor H (2020) Simulation of green roofs and their potential mitigating effects on the urban heat island using an artificial neural network: A case study in Austin Texas. Adv Space Res 66(8):1846–1862CrossRef
Zurück zum Zitat Bai P, Liu X, Xie J (2021) Simulating runoff under changing climatic conditions: a comparison of the long short-term memory network with two conceptual hydrologic models. J Hydrol 592 Bai P, Liu X, Xie J (2021) Simulating runoff under changing climatic conditions: a comparison of the long short-term memory network with two conceptual hydrologic models. J Hydrol 592
Zurück zum Zitat Berardi U, GhaffarianHoseini A, GhaffarianHoseini A (2014) State-of-the-art analysis of the environmental benefits of green roofs. Appl Energy 115:411–428CrossRef Berardi U, GhaffarianHoseini A, GhaffarianHoseini A (2014) State-of-the-art analysis of the environmental benefits of green roofs. Appl Energy 115:411–428CrossRef
Zurück zum Zitat Berthier E, Ramier D, de Gouvello B (2011) Simulation of green roof hydrological behavior with a reservoir model. In: 12nd International Conference on Urban Drainage, Porto Alegre/Brazil Berthier E, Ramier D, de Gouvello B (2011) Simulation of green roof hydrological behavior with a reservoir model. In: 12nd International Conference on Urban Drainage, Porto Alegre/Brazil
Zurück zum Zitat Cho K, Van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. Computer ence Cho K, Van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. Computer ence
Zurück zum Zitat Czemiel BJ (2010) Green roof performance towards management of runoff water quantity and quality: A review. Ecol Eng 36(4):351–360CrossRef Czemiel BJ (2010) Green roof performance towards management of runoff water quantity and quality: A review. Ecol Eng 36(4):351–360CrossRef
Zurück zum Zitat Dey S, Dey AK, Mall RK (2021) Modeling long-term groundwater levels by exploring deep bidirectional long short-term memory using hydro-climatic data. Water Resour Manage 35(10):3395–3410CrossRef Dey S, Dey AK, Mall RK (2021) Modeling long-term groundwater levels by exploring deep bidirectional long short-term memory using hydro-climatic data. Water Resour Manage 35(10):3395–3410CrossRef
Zurück zum Zitat Erdemir D, Ayata T (2017) Prediction of temperature decreasing on a green roof by using artificial neural network. Appl Therm Eng 112:1317–1325CrossRef Erdemir D, Ayata T (2017) Prediction of temperature decreasing on a green roof by using artificial neural network. Appl Therm Eng 112:1317–1325CrossRef
Zurück zum Zitat Gao S, Huang Y, Zhang S, Han J, Wang G, Zhang M, Lin Q (2020) Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J Hydrol 589 Gao S, Huang Y, Zhang S, Han J, Wang G, Zhang M, Lin Q (2020) Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J Hydrol 589
Zurück zum Zitat Gauch M, Kratzert F, Klotz D, Nearing G, Lin J, Hochreiter S (2021) Rainfall-runoff prediction at multiple timescales with a single long short-term memory network. Hydrol Earth Syst Sci 25(4):2045–2062CrossRef Gauch M, Kratzert F, Klotz D, Nearing G, Lin J, Hochreiter S (2021) Rainfall-runoff prediction at multiple timescales with a single long short-term memory network. Hydrol Earth Syst Sci 25(4):2045–2062CrossRef
Zurück zum Zitat Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: Continual prediction with LSTM. Neural Comput 12(10):2451–2471CrossRef Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: Continual prediction with LSTM. Neural Comput 12(10):2451–2471CrossRef
Zurück zum Zitat Getter KL, Rowe DB (2006) The role of extensive green roofs in sustainable development. HortScience 41(5):1276–1285CrossRef Getter KL, Rowe DB (2006) The role of extensive green roofs in sustainable development. HortScience 41(5):1276–1285CrossRef
Zurück zum Zitat Hilten RN, Lawrence TM, Tollner EW (2008) Modeling stormwater runoff from green roofs with HYDRUS-1D. J Hydrol 358(3–4):288–293CrossRef Hilten RN, Lawrence TM, Tollner EW (2008) Modeling stormwater runoff from green roofs with HYDRUS-1D. J Hydrol 358(3–4):288–293CrossRef
Zurück zum Zitat Hochreiter S (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. Internat J Uncertain Fuzziness Knowledge-Based Systems 6(2):107–116CrossRef Hochreiter S (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. Internat J Uncertain Fuzziness Knowledge-Based Systems 6(2):107–116CrossRef
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
Zurück zum Zitat Hu C, Wu Q, Li H, Jian S, Li N, Lou Z (2018) Deep Learning with a long short-term memory networks approach for rainfall-runoff simulation. Water 10(11) Hu C, Wu Q, Li H, Jian S, Li N, Lou Z (2018) Deep Learning with a long short-term memory networks approach for rainfall-runoff simulation. Water 10(11)
Zurück zum Zitat Informatik F, Bengio Y, Frasconi P, Schmidhuber J (2003) Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. A field guide to dynamical recurrent neural networks Informatik F, Bengio Y, Frasconi P, Schmidhuber J (2003) Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. A field guide to dynamical recurrent neural networks
Zurück zum Zitat Kasmin H, Stovin VR, Hathway EA (2010) Towards a generic rainfall-runoff model for green roofs. Water Sci Technol 62(4):898–905CrossRef Kasmin H, Stovin VR, Hathway EA (2010) Towards a generic rainfall-runoff model for green roofs. Water Sci Technol 62(4):898–905CrossRef
Zurück zum Zitat Kolokotsa D, Santamouris M, Zerefos SC (2013) Green and cool roofs’ urban heat island mitigation potential in European climates for office buildings under free floating conditions. Sol Energy 95:118–130CrossRef Kolokotsa D, Santamouris M, Zerefos SC (2013) Green and cool roofs’ urban heat island mitigation potential in European climates for office buildings under free floating conditions. Sol Energy 95:118–130CrossRef
Zurück zum Zitat Kratzert F, Klotz D, Brenner C, Schulz K, Herrnegger M (2018) Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol Earth Syst Sci 22(11):6005–6022CrossRef Kratzert F, Klotz D, Brenner C, Schulz K, Herrnegger M (2018) Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol Earth Syst Sci 22(11):6005–6022CrossRef
Zurück zum Zitat Kratzert F, Klotz D, Shalev G, Klambauer G, Hochreiter S, Nearing G (2019) Benchmarking a catchment-aware long short-term memory network (LSTM) for large-scale hydrological modeling Kratzert F, Klotz D, Shalev G, Klambauer G, Hochreiter S, Nearing G (2019) Benchmarking a catchment-aware long short-term memory network (LSTM) for large-scale hydrological modeling
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRef
Zurück zum Zitat Lees T, Buechel M, Anderson B, Slater L, Reece S, Coxon G, Dadson SJ (2021) Benchmarking data-driven rainfall-runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models. Hydrol Earth Syst Sci 25(10):5517–5534CrossRef Lees T, Buechel M, Anderson B, Slater L, Reece S, Coxon G, Dadson SJ (2021) Benchmarking data-driven rainfall-runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models. Hydrol Earth Syst Sci 25(10):5517–5534CrossRef
Zurück zum Zitat Lepp NW (2008) Planting green roofs and living walls. J Environ Qual 37(6):2408 Lepp NW (2008) Planting green roofs and living walls. J Environ Qual 37(6):2408
Zurück zum Zitat Li F, Chen J, Engel BA, Liu Y, Wang S, Sun H (2021) Assessing the effectiveness and cost efficiency of green infrastructure practices on surface runoff reduction at an urban watershed in China. Water 13(1) Li F, Chen J, Engel BA, Liu Y, Wang S, Sun H (2021) Assessing the effectiveness and cost efficiency of green infrastructure practices on surface runoff reduction at an urban watershed in China. Water 13(1)
Zurück zum Zitat Li W, Kiaghadi A, Dawson C (2020a) Exploring the best sequence LSTM modeling architecture for flood prediction. Neural Comput Appl Li W, Kiaghadi A, Dawson C (2020a) Exploring the best sequence LSTM modeling architecture for flood prediction. Neural Comput Appl
Zurück zum Zitat Li W, Kiaghadi A, Dawson C (2020b) High temporal resolution rainfall–runoff modeling using long-short-term-memory (LSTM) networks. Neural Comput Appl Li W, Kiaghadi A, Dawson C (2020b) High temporal resolution rainfall–runoff modeling using long-short-term-memory (LSTM) networks. Neural Comput Appl
Zurück zum Zitat Li Y, Babcock RW, Jr. (2014) Green roof hydrologic performance and modeling: a review. Water Sci Technol 69(4):727–738CrossRef Li Y, Babcock RW, Jr. (2014) Green roof hydrologic performance and modeling: a review. Water Sci Technol 69(4):727–738CrossRef
Zurück zum Zitat Li Y, Babcock RW Jr (2015) Modeling hydrologic performance of a green roof system with HYDRUS-2D. J Environ Eng 141(11) Li Y, Babcock RW Jr (2015) Modeling hydrologic performance of a green roof system with HYDRUS-2D. J Environ Eng 141(11)
Zurück zum Zitat Liang C, Li H, Lei M, Du Q (2018) Dongting Lake Water Level Forecast and Its Relationship with the Three Gorges Dam Based on a Long Short-Term Memory Network. Water 10(10):1389CrossRef Liang C, Li H, Lei M, Du Q (2018) Dongting Lake Water Level Forecast and Its Relationship with the Three Gorges Dam Based on a Long Short-Term Memory Network. Water 10(10):1389CrossRef
Zurück zum Zitat Martin WD III, Kaye NB, Mohammadi S (2020) A physics-based routing model for modular green roof systems. Proceedings of the Institution of Civil Engineers-Water Management 173(3):142–151CrossRef Martin WD III, Kaye NB, Mohammadi S (2020) A physics-based routing model for modular green roof systems. Proceedings of the Institution of Civil Engineers-Water Management 173(3):142–151CrossRef
Zurück zum Zitat Mitchell T, Buchanan B, DeJong G, Dietterich T, Rosenbloom P, Waibel A (2003) Machine learning. Annual Review of Computer Science 4:417–433CrossRef Mitchell T, Buchanan B, DeJong G, Dietterich T, Rosenbloom P, Waibel A (2003) Machine learning. Annual Review of Computer Science 4:417–433CrossRef
Zurück zum Zitat Najafzadeh M (2015) Neurofuzzy-based GMDH-PSO to predict maximum scour depth at equilibrium at culvert outlets. Journal of Pipeline Systems Engineering and Practice 7:06015001CrossRef Najafzadeh M (2015) Neurofuzzy-based GMDH-PSO to predict maximum scour depth at equilibrium at culvert outlets. Journal of Pipeline Systems Engineering and Practice 7:06015001CrossRef
Zurück zum Zitat Nourani V, Behfar N (2021) Multi-station runoff-sediment modeling using seasonal LSTM models. J Hydrol 601 Nourani V, Behfar N (2021) Multi-station runoff-sediment modeling using seasonal LSTM models. J Hydrol 601
Zurück zum Zitat Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, Gaffin S, Koehler M, Liu KKY, Rowe B (2007) Green roofs as urban ecosystems: Ecological structures, functions, and services. Bioscience 57(10):823–833CrossRef Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, Gaffin S, Koehler M, Liu KKY, Rowe B (2007) Green roofs as urban ecosystems: Ecological structures, functions, and services. Bioscience 57(10):823–833CrossRef
Zurück zum Zitat Palla A, Gnecco I, Lanza LG (2009) Unsaturated 2D modelling of subsurface water flow in the coarse-grained porous matrix of a green roof. J Hydrol 379(1–2):193–204CrossRef Palla A, Gnecco I, Lanza LG (2009) Unsaturated 2D modelling of subsurface water flow in the coarse-grained porous matrix of a green roof. J Hydrol 379(1–2):193–204CrossRef
Zurück zum Zitat Peng Z, Smith C, Stovin V (2019) Internal fluctuations in green roof substrate moisture content during storm events: Monitored data and model simulations. J Hydrol 573:872–884CrossRef Peng Z, Smith C, Stovin V (2019) Internal fluctuations in green roof substrate moisture content during storm events: Monitored data and model simulations. J Hydrol 573:872–884CrossRef
Zurück zum Zitat Rasmussen CA (2006) HYDROLOGIC BEHAVIOR OF VEGETATED ROOFS. J Am Water Resour Assoc 42:1261–1274CrossRef Rasmussen CA (2006) HYDROLOGIC BEHAVIOR OF VEGETATED ROOFS. J Am Water Resour Assoc 42:1261–1274CrossRef
Zurück zum Zitat Roehr D, Kong Y (2010) Runoff Reduction Effects of Green Roofs in Vancouver, BC, Kelowna, BC, and Shanghai. Canadian Water Resources Journal 35:15CrossRef Roehr D, Kong Y (2010) Runoff Reduction Effects of Green Roofs in Vancouver, BC, Kelowna, BC, and Shanghai. Canadian Water Resources Journal 35:15CrossRef
Zurück zum Zitat Shafique M, Kim R (2017) Retrofitting the low impact development practices into developed urban areas including barriers and potential solution. Open Geosciences 9(1):240–254CrossRef Shafique M, Kim R (2017) Retrofitting the low impact development practices into developed urban areas including barriers and potential solution. Open Geosciences 9(1):240–254CrossRef
Zurück zum Zitat She N, Pang J (2010) Physically based green roof model. J Hydrol Eng 15(6):458–464CrossRef She N, Pang J (2010) Physically based green roof model. J Hydrol Eng 15(6):458–464CrossRef
Zurück zum Zitat Sherstinsky A (2020) Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys D-Nonlinear Phenom 404 Sherstinsky A (2020) Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys D-Nonlinear Phenom 404
Zurück zum Zitat Sims AW, Robinson CE, Smart CC, O'Carroll DM (2019) Mechanisms controlling green roof peak flow rate attenuation. J Hydrol 577 Sims AW, Robinson CE, Smart CC, O'Carroll DM (2019) Mechanisms controlling green roof peak flow rate attenuation. J Hydrol 577
Zurück zum Zitat Soulis KX, Valiantzas JD, Ntoulas N, Kargas G, Nektarios PA (2017) Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model. J Environ Manage 200:434–445CrossRef Soulis KX, Valiantzas JD, Ntoulas N, Kargas G, Nektarios PA (2017) Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model. J Environ Manage 200:434–445CrossRef
Zurück zum Zitat Stovin V, Poë S, Berretta C (2013) A modelling study of long term green roof retention performance. J Environ Manage 131:206–215CrossRef Stovin V, Poë S, Berretta C (2013) A modelling study of long term green roof retention performance. J Environ Manage 131:206–215CrossRef
Zurück zum Zitat Sun T, Bou-Zeid E, Wang Z-H, Zerba E, Ni G-H (2013) Hydrometeorological determinants of green roof performance via a vertically-resolved model for heat and water transport. Build Environ 60:211–224CrossRef Sun T, Bou-Zeid E, Wang Z-H, Zerba E, Ni G-H (2013) Hydrometeorological determinants of green roof performance via a vertically-resolved model for heat and water transport. Build Environ 60:211–224CrossRef
Zurück zum Zitat Taver V, Johannet A, Borrell-Estupina V, Pistre S (2015) Feed-forward vs recurrent neural network models for non-stationarity modelling using data assimilation and adaptivity. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 60(7–8):1242–1265CrossRef Taver V, Johannet A, Borrell-Estupina V, Pistre S (2015) Feed-forward vs recurrent neural network models for non-stationarity modelling using data assimilation and adaptivity. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 60(7–8):1242–1265CrossRef
Zurück zum Zitat Tsang SW, Jim CY (2016) Applying artificial intelligence modeling to optimize green roof irrigation. Energy and Buildings 127:360–369CrossRef Tsang SW, Jim CY (2016) Applying artificial intelligence modeling to optimize green roof irrigation. Energy and Buildings 127:360–369CrossRef
Zurück zum Zitat Versini PA, Stanic F, Gires A, Schertzer D, Tchiguirinskaia I (2020) Measurements of the water balance components of a large green roof in the greater Paris area. Earth Syst Sci Data 12(2):1025–1035CrossRef Versini PA, Stanic F, Gires A, Schertzer D, Tchiguirinskaia I (2020) Measurements of the water balance components of a large green roof in the greater Paris area. Earth Syst Sci Data 12(2):1025–1035CrossRef
Zurück zum Zitat Versini PA, Ramier D, Berthier E, de Gouvello B (2015) Assessment of the hydrological impacts of green roof: From building scale to basin scale. J Hydrol 524:562–575CrossRef Versini PA, Ramier D, Berthier E, de Gouvello B (2015) Assessment of the hydrological impacts of green roof: From building scale to basin scale. J Hydrol 524:562–575CrossRef
Zurück zum Zitat Xia J, Huang GH, Bass B (1997) Combination of differentiated prediction approach and interval analysis for the prediction of weather variables under uncertainty. J Environ Manage 49(1):95–106CrossRef Xia J, Huang GH, Bass B (1997) Combination of differentiated prediction approach and interval analysis for the prediction of weather variables under uncertainty. J Environ Manage 49(1):95–106CrossRef
Zurück zum Zitat Xie H, Liu J (2020) A modeling study of the interflow in the green roof. Urban For Urban Green 54 Xie H, Liu J (2020) A modeling study of the interflow in the green roof. Urban For Urban Green 54
Zurück zum Zitat Xie H, Wu Y, Wang L, Luo W, Zhou W, Zhou H, Yan Y, Liu J (2020) Comparing simulations of green roof hydrological processes by SWMM and HYDRUS-1D. Water Supply 20(1):130–139CrossRef Xie H, Wu Y, Wang L, Luo W, Zhou W, Zhou H, Yan Y, Liu J (2020) Comparing simulations of green roof hydrological processes by SWMM and HYDRUS-1D. Water Supply 20(1):130–139CrossRef
Zurück zum Zitat Yang W-Y, Li D, Sun T, Ni G-H (2015) Saturation-excess and infiltration-excess runoff on green roofs. Ecol Eng 74:327–336CrossRef Yang W-Y, Li D, Sun T, Ni G-H (2015) Saturation-excess and infiltration-excess runoff on green roofs. Ecol Eng 74:327–336CrossRef
Zurück zum Zitat Yin H, Zhang X, Wang F, Zhang Y, Xia R, Jin J (2021) Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model. J Hydrol 598 Yin H, Zhang X, Wang F, Zhang Y, Xia R, Jin J (2021) Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model. J Hydrol 598 
Zurück zum Zitat Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput 31(7):1235–1270CrossRef Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput 31(7):1235–1270CrossRef
Zurück zum Zitat Yuan X, Chen C, Lei X, Yuan Y, Adnan RM (2018) Monthly runoff forecasting based on LSTM-ALO model. Stoch Env Res Risk Assess 32(8):2199–2212CrossRef Yuan X, Chen C, Lei X, Yuan Y, Adnan RM (2018) Monthly runoff forecasting based on LSTM-ALO model. Stoch Env Res Risk Assess 32(8):2199–2212CrossRef
Zurück zum Zitat Zhang J, Zhu Y, Zhang X, Ye M, Yang J (2018) Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas. J Hydrol 561:918–929CrossRef Zhang J, Zhu Y, Zhang X, Ye M, Yang J (2018) Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas. J Hydrol 561:918–929CrossRef
Metadaten
Titel
Green Roof Hydrological Modelling With GRU and LSTM Networks
verfasst von
Haowen Xie
Mark Randall
Kwok-wing Chau
Publikationsdatum
03.02.2022
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 3/2022
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-022-03076-6

Weitere Artikel der Ausgabe 3/2022

Water Resources Management 3/2022 Zur Ausgabe