Skip to main content
Erschienen in: Water Resources Management 1/2023

03.11.2022

A Low-Return-Period Rainfall Intensity Formula for Estimating the Design Return Period of the Combined Interceptor Sewers

verfasst von: Xingpo Liu, Chenmeng Ouyang, Yuwen Zhou

Erschienen in: Water Resources Management | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The design rainfall intensity and its return period of the combined interceptor sewer is an important factor affecting combined sewer overflow (CSO) occurrence. However, we often use the interceptor ratio (or interceptor multiple, n0) to design the interceptor sewer, and its equivalent design return period is often ignored. In this study, a low return period rainfall formula modeling method was proposed to estimate this return period. First, a new rainfall event separation approach was especially developed, and the minimum interevent time (MIET) was set to time of concentration of the tributary area corresponding to the most downstream interceptor well. Second, a new rainfall intensity sampling algorithm, annual multi—event—maxima (AMEM) sampling algorithm, was put forward. For this sampling algorithm, several maxima of rainfall intensity should be sampled annually, and only one maximum is sampled for each rainfall event. In addition, the empirical frequency values of the above sampled rainfall intensities can be obtained according to the mathematical expectation formula (Weibull formula). After comparison, the lognormal distribution was selected for the theoretical probability density function. Finally, parameters of the low return period rainfall intensity formula were estimated using three-parameter Horner formula and MCMC (Markov Chain Monte Carlo) algorithm. A case study was conducted to demonstrate the proposed method based on the recorded rainfall data from a meteorological station in southwestern China and a combined sewer system. Results revealed that: (1) A MIET determination method was proposed according to independence of CSO events. (2) An annual multi-event-maxima (AMEM) sampling was proposed for collecting samples of the low return period rainfall intensity. (3) For the case study, the best-fit distribution for low return period rainfall intensity was lognormal distribution. (4) Resulted low return period rainfall intensity formula was provided.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmad I, Khan DA, Almanjahie IM et al (2019) At-site rainfall frequency analysis using partial duration series and annual maximum series: A case study. Appl Ecol Environ Res 17(4):8351–8367CrossRef Ahmad I, Khan DA, Almanjahie IM et al (2019) At-site rainfall frequency analysis using partial duration series and annual maximum series: A case study. Appl Ecol Environ Res 17(4):8351–8367CrossRef
Zurück zum Zitat Andrés-Doménech I, Múnera JC, Francés F, Marco JB (2010) Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment. Hydrol Earth Syst Sci 14(126):2057–2072CrossRef Andrés-Doménech I, Múnera JC, Francés F, Marco JB (2010) Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment. Hydrol Earth Syst Sci 14(126):2057–2072CrossRef
Zurück zum Zitat Gooré Bi EG, Monette F, Gachon P et al (2015) Quantitative and qualitative assessment of the impact of climate change on a combined sewer overflow and its receiving water body. Environ Sci Pollut Res 22(15):11905–11921CrossRef Gooré Bi EG, Monette F, Gachon P et al (2015) Quantitative and qualitative assessment of the impact of climate change on a combined sewer overflow and its receiving water body. Environ Sci Pollut Res 22(15):11905–11921CrossRef
Zurück zum Zitat Jean MÈ, Duchesne S, Pelletier G et al (2018) Selection of rainfall information as input data for the design of combined sewer overflow solutions. J Hydrol 565:559–569CrossRef Jean MÈ, Duchesne S, Pelletier G et al (2018) Selection of rainfall information as input data for the design of combined sewer overflow solutions. J Hydrol 565:559–569CrossRef
Zurück zum Zitat Lau J, Butler D, Schutze M (2002) Is combined sewer overflow spill frequency/volume a good indicator of receiving water quality impact? Urban Water 4(2):181–189CrossRef Lau J, Butler D, Schutze M (2002) Is combined sewer overflow spill frequency/volume a good indicator of receiving water quality impact? Urban Water 4(2):181–189CrossRef
Zurück zum Zitat Li J, Xiang L, Wenliang W, Yaotang W (2019) Analysis of influence of rainfall interval on volume capture ratio of annual rainfall. China Water & Wastewater 35(9):120–126 (in Chinese) Li J, Xiang L, Wenliang W, Yaotang W (2019) Analysis of influence of rainfall interval on volume capture ratio of annual rainfall. China Water & Wastewater 35(9):120–126 (in Chinese)
Zurück zum Zitat Liu X, Xia C, Tang Y et al (2021) Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis-Hastings algorithm. Water Sci Technol 83(5):1085–1102CrossRef Liu X, Xia C, Tang Y et al (2021) Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis-Hastings algorithm. Water Sci Technol 83(5):1085–1102CrossRef
Zurück zum Zitat Mailhot A, Talbot G, Lavallée B (2015) Relationships between rainfall and Combined Sewer Overflow (CSO) occurrences. J Hydrol 523:602–609CrossRef Mailhot A, Talbot G, Lavallée B (2015) Relationships between rainfall and Combined Sewer Overflow (CSO) occurrences. J Hydrol 523:602–609CrossRef
Zurück zum Zitat Passerat J, Ouattara NK, Mouchel J-M et al (2011) Impact of an intense combined sewer overflow event on the microbiological water quality of the Seine River. Water Res 45(2):893–903CrossRef Passerat J, Ouattara NK, Mouchel J-M et al (2011) Impact of an intense combined sewer overflow event on the microbiological water quality of the Seine River. Water Res 45(2):893–903CrossRef
Zurück zum Zitat Restrepo-Posada PJ, Eagelson PS (1982) Identification of independent rainstorms. J Hydrol 55(1–4):303–319CrossRef Restrepo-Posada PJ, Eagelson PS (1982) Identification of independent rainstorms. J Hydrol 55(1–4):303–319CrossRef
Zurück zum Zitat Rosin TR, Romano M, Keedwell E et al (2021) A committee evolutionary neural network for the prediction of combined sewer overflows[J]. Water Resour Manag 35(4):1273–1289 Rosin TR, Romano M, Keedwell E et al (2021) A committee evolutionary neural network for the prediction of combined sewer overflows[J]. Water Resour Manag 35(4):1273–1289
Zurück zum Zitat Weibull W (1939) A statistical theory of the strength of material. Stockholm: Ingeniors Vetenskapa Acadamiens Handligar 1–45 Weibull W (1939) A statistical theory of the strength of material. Stockholm: Ingeniors Vetenskapa Acadamiens Handligar 1–45
Zurück zum Zitat Yilmaza AG, Safaeta H, Huanga F et al (2014) Time-varying character of storm intensity frequency and duration curves. Australian Journal of Water 18(1):15–26 Yilmaza AG, Safaeta H, Huanga F et al (2014) Time-varying character of storm intensity frequency and duration curves. Australian Journal of Water 18(1):15–26
Zurück zum Zitat Yu Y, Kojima K, An KJ et al (2013) Cluster analysis for characterization of rainfalls and CSO behaviors in an urban drainage area of Tokyo. Water Sci Technol 68(3):544–551CrossRef Yu Y, Kojima K, An KJ et al (2013) Cluster analysis for characterization of rainfalls and CSO behaviors in an urban drainage area of Tokyo. Water Sci Technol 68(3):544–551CrossRef
Zurück zum Zitat Zhang C, Ma XL, Lu F et al (2016) Code for design of outdoor wastewater engineering(GB 50014). Beijing: China Planning Press: 1–248 (in Chinese) Zhang C, Ma XL, Lu F et al (2016) Code for design of outdoor wastewater engineering(GB 50014). Beijing: China Planning Press: 1–248 (in Chinese)
Metadaten
Titel
A Low-Return-Period Rainfall Intensity Formula for Estimating the Design Return Period of the Combined Interceptor Sewers
verfasst von
Xingpo Liu
Chenmeng Ouyang
Yuwen Zhou
Publikationsdatum
03.11.2022
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 1/2023
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-022-03369-w

Weitere Artikel der Ausgabe 1/2023

Water Resources Management 1/2023 Zur Ausgabe