Skip to main content
Erschienen in: Wireless Networks 4/2017

09.02.2016

CASMOC: a novel complex alliance strategy with multi-objective optimization of coverage in wireless sensor networks

verfasst von: Zeyu Sun, Yongsheng Zhang, Yalin Nie, Wei Wei, Jaime Lloret, Houbing Song

Erschienen in: Wireless Networks | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coverage is a significant performance indicator of wireless sensor networks. Data redundancy in k-coverage raises a set of issues including network congestion, coverage reduction, energy inefficiency, among others. To address these issues, this paper proposes a novel algorithm called complex alliance strategy with multi-objective optimization of coverage (CASMOC) which could improve node coverage effectively. This paper also gives the proportional relationship of the energy conversion function between the working node and its neighbors, and applies this relationship in scheduling low energy mobile nodes, thus achieving energy balance of the whole network, and optimizing network resources. The extensive simulation results demonstrate that CASMOC could not only improve the quality of network coverage, but also mitigate rapid node energy consumption effectively, thereby extending the life cycle of the network significantly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wei, W., Yang, X., Shen, P., & Zhou, B. (2012). Holes detection in anisotropic sensornets: Topological methods. International Journal of Distributed Sensor Networks, 2012, 1–9. Wei, W., Yang, X., Shen, P., & Zhou, B. (2012). Holes detection in anisotropic sensornets: Topological methods. International Journal of Distributed Sensor Networks, 2012, 1–9.
2.
Zurück zum Zitat Xing, X., Wang, G., & Li, J. (2014). Collaborative target tracking in wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 23(8), 117–135. Xing, X., Wang, G., & Li, J. (2014). Collaborative target tracking in wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 23(8), 117–135.
3.
Zurück zum Zitat Sun, Z., Weiguo, W., Wang, H., Chen, H., & Wei, W. (2014). An optimization strategy coverage control algorithm for WSN. International Journal of Distributed Sensor Networks, 2014, 1–17. Sun, Z., Weiguo, W., Wang, H., Chen, H., & Wei, W. (2014). An optimization strategy coverage control algorithm for WSN. International Journal of Distributed Sensor Networks, 2014, 1–17.
4.
Zurück zum Zitat Liao, Z., Wang, J., Zhang, S., & Zhang, X. (2013). A deterministic sensor placement scheme for full coverage and connectivity without boundary effect in wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 19(3–4), 327–351. Liao, Z., Wang, J., Zhang, S., & Zhang, X. (2013). A deterministic sensor placement scheme for full coverage and connectivity without boundary effect in wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 19(3–4), 327–351.
5.
Zurück zum Zitat Dong, M., Ota, K., Laurence, T. Y., Chang, S., Zhu, H., & Zhou, Z. (2014). Mobile agent-based energy-aware and user-centric data collection in wireless sensor networks. Computer Networks, 74(3), 58–70.CrossRef Dong, M., Ota, K., Laurence, T. Y., Chang, S., Zhu, H., & Zhou, Z. (2014). Mobile agent-based energy-aware and user-centric data collection in wireless sensor networks. Computer Networks, 74(3), 58–70.CrossRef
6.
Zurück zum Zitat Tseng, Y., Chen, P., & Chen, W. (2012). k-Angle object coverage problem in a wireless sensor network. IEEE Sensors Journal, 12(12), 3408–3416.CrossRef Tseng, Y., Chen, P., & Chen, W. (2012). k-Angle object coverage problem in a wireless sensor network. IEEE Sensors Journal, 12(12), 3408–3416.CrossRef
7.
Zurück zum Zitat Ghaderi, R., Esnaashari, M., & Meybodi, M. (2014). A cellular learning automata-based algorithm for solving the coverage and connectivity problem in wireless sensor networks. Ad hoc & Sensor Wireless Networks, Ad hoc & Sensor Wireless Networks, 22(4), 171–203. Ghaderi, R., Esnaashari, M., & Meybodi, M. (2014). A cellular learning automata-based algorithm for solving the coverage and connectivity problem in wireless sensor networks. Ad hoc & Sensor Wireless Networks, Ad hoc & Sensor Wireless Networks, 22(4), 171–203.
8.
Zurück zum Zitat Yanling, H., Dong, M., Ota, K., Liu, A., & Guo, M. (2014). Mobile target detection in wireless sensor networks with adjustable sensing frequency. IEEE Systems, 8(3), 1–12.CrossRef Yanling, H., Dong, M., Ota, K., Liu, A., & Guo, M. (2014). Mobile target detection in wireless sensor networks with adjustable sensing frequency. IEEE Systems, 8(3), 1–12.CrossRef
9.
Zurück zum Zitat Yang, C., & Chin, K. (2014). Novel algorithm for complete targets coverage in energy harvesting wireless sensor networks. IEEE Communications Letters, 18(1), 118–121.MathSciNetCrossRef Yang, C., & Chin, K. (2014). Novel algorithm for complete targets coverage in energy harvesting wireless sensor networks. IEEE Communications Letters, 18(1), 118–121.MathSciNetCrossRef
10.
Zurück zum Zitat Wei, W., & Qi, Y. (2011). Information potential fields navigation in wireless ad-hoc sensor network. Sensor, 2011, 4794–4807.CrossRef Wei, W., & Qi, Y. (2011). Information potential fields navigation in wireless ad-hoc sensor network. Sensor, 2011, 4794–4807.CrossRef
11.
Zurück zum Zitat Long, J., Dong, M., Ota, K., Liu, A., & Hai, S. (2015). Reliability guaranteed efficient data gathering in wireless sensor networks. IEEE Access, 3(2), 430–444.CrossRef Long, J., Dong, M., Ota, K., Liu, A., & Hai, S. (2015). Reliability guaranteed efficient data gathering in wireless sensor networks. IEEE Access, 3(2), 430–444.CrossRef
12.
Zurück zum Zitat Wang, Y., & Tseng, Y. (2008). Distributed deployment schemes for mobile wireless sensor networks to ensure multi-level coverage. IEEE Trans. Parallel and Distributed Systems, 19(9), 1280–1294.CrossRef Wang, Y., & Tseng, Y. (2008). Distributed deployment schemes for mobile wireless sensor networks to ensure multi-level coverage. IEEE Trans. Parallel and Distributed Systems, 19(9), 1280–1294.CrossRef
13.
Zurück zum Zitat Akhtar, F., & Rehmani, M. H. (2015). Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Elsevier Renewable and Sustainable Energy Reviews, 45(5), 769–784.CrossRef Akhtar, F., & Rehmani, M. H. (2015). Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Elsevier Renewable and Sustainable Energy Reviews, 45(5), 769–784.CrossRef
14.
Zurück zum Zitat Yen, L., Changwu, Yu., & Cheng, Y. (2006). Expected k-coverage in wireless sensor networks. Ad Hoc Networks, 5(4), 636–650.CrossRef Yen, L., Changwu, Yu., & Cheng, Y. (2006). Expected k-coverage in wireless sensor networks. Ad Hoc Networks, 5(4), 636–650.CrossRef
15.
Zurück zum Zitat Kong, L., Zhao, M., Liu, X., Jialiang, L., Liu, Y., Minyou, W., & Shu, W. (2014). Surface coverage in sensor network. IEEE Transactions on Parallel and Distributed Systems, 25(1), 234–243.CrossRef Kong, L., Zhao, M., Liu, X., Jialiang, L., Liu, Y., Minyou, W., & Shu, W. (2014). Surface coverage in sensor network. IEEE Transactions on Parallel and Distributed Systems, 25(1), 234–243.CrossRef
16.
Zurück zum Zitat Sendra, S., Fernandez, P., Turro, C., & Lloret, J. (2010). IEEE 802.11a/b/g/n indoor coverage and performance comparison. The Sixth International Conference on Wireless and Mobile Communications (ICWMC 2010), Valencia (Spain), September 20–24, 2010. Sendra, S., Fernandez, P., Turro, C., & Lloret, J. (2010). IEEE 802.11a/b/g/n indoor coverage and performance comparison. The Sixth International Conference on Wireless and Mobile Communications (ICWMC 2010), Valencia (Spain), September 20–24, 2010.
17.
Zurück zum Zitat Garcia, M., Tomás, J., Boronat, F., & Lloret, J. (2009). The development of two systems for indoor wireless sensors self-location. Ad Hoc & Sensor Wireless Networks, 8(3), 235–258. Garcia, M., Tomás, J., Boronat, F., & Lloret, J. (2009). The development of two systems for indoor wireless sensors self-location. Ad Hoc & Sensor Wireless Networks, 8(3), 235–258.
18.
Zurück zum Zitat Sendra, S., Lloret, J., Turro, C., & Agriar, J. M. (2014). IEEE 802.11a/b/g/n short scale indoor wireless sensor placement. International Journal of Ad Hoc and Ubiquitous Computing, 15(2), 68–82.CrossRef Sendra, S., Lloret, J., Turro, C., & Agriar, J. M. (2014). IEEE 802.11a/b/g/n short scale indoor wireless sensor placement. International Journal of Ad Hoc and Ubiquitous Computing, 15(2), 68–82.CrossRef
19.
Zurück zum Zitat Mohamed, L., Herve, G., & Mohammed, F. (2010). Cluster-based energy-efficient k-coverage for wireless sensor networks. Network Protocols and Algorithms, 2(2), 89–106. Mohamed, L., Herve, G., & Mohammed, F. (2010). Cluster-based energy-efficient k-coverage for wireless sensor networks. Network Protocols and Algorithms, 2(2), 89–106.
20.
Zurück zum Zitat Suárez, A., Santana, J. A., Maciaslopez, E. M., Mena, V. E., Canino, J. M., & Marrero, D. (2014). RSSI prediction in WiFi considering realistic heterogeneous restrictions. Network Protocols and Algorithms, 4(6), 19–40.CrossRef Suárez, A., Santana, J. A., Maciaslopez, E. M., Mena, V. E., Canino, J. M., & Marrero, D. (2014). RSSI prediction in WiFi considering realistic heterogeneous restrictions. Network Protocols and Algorithms, 4(6), 19–40.CrossRef
21.
Zurück zum Zitat Matthieu, L., Faicel, H., & Hichem, S. (2011). Multi-objective optimization in wireless sensors networks, 2011 Internation Conference on Microelectronics (ICM 2011), Hammamet, Tunisia, pp. 1–4, 19–22 Dec. 2011. Matthieu, L., Faicel, H., & Hichem, S. (2011). Multi-objective optimization in wireless sensors networks, 2011 Internation Conference on Microelectronics (ICM 2011), Hammamet, Tunisia, pp. 1–4, 19–22 Dec. 2011.
22.
Zurück zum Zitat Meng, F., Wang, H., & He, H. (2011). Connected coverage protocol using cooperative sensing model for wireless sensor network. Acta Elecronica Sinca, 9(4), 772–779. Meng, F., Wang, H., & He, H. (2011). Connected coverage protocol using cooperative sensing model for wireless sensor network. Acta Elecronica Sinca, 9(4), 772–779.
23.
Zurück zum Zitat Mini, S., Udqata, S. K., & Sabat, S. L. (2014). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensros Journal, 14(3), 636–644.CrossRef Mini, S., Udqata, S. K., & Sabat, S. L. (2014). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensros Journal, 14(3), 636–644.CrossRef
24.
Zurück zum Zitat Li, Y., Chinh, V., Ai, C., Chen, G., & Zhao, Y. (2011). Transforming complete coverage algorithms to partial coverage algorithm for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(4), 695–703.CrossRef Li, Y., Chinh, V., Ai, C., Chen, G., & Zhao, Y. (2011). Transforming complete coverage algorithms to partial coverage algorithm for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(4), 695–703.CrossRef
25.
Zurück zum Zitat Iqbal, M., Naeem, M., Anpalagan, A., Ahmed, A., & Azam, M. (2015). Wireless sensor network optimization: multi-objective paradigm. Sensors, 7, 17572–17620.CrossRef Iqbal, M., Naeem, M., Anpalagan, A., Ahmed, A., & Azam, M. (2015). Wireless sensor network optimization: multi-objective paradigm. Sensors, 7, 17572–17620.CrossRef
26.
Zurück zum Zitat Razafindralambo, T., & Simplotryl, D. (2011). Connectivity preservation and coverage schemes for wireless sensor networks. IEEE Transactions on Automatic Control, 56(10), 2418–2428.MathSciNetCrossRef Razafindralambo, T., & Simplotryl, D. (2011). Connectivity preservation and coverage schemes for wireless sensor networks. IEEE Transactions on Automatic Control, 56(10), 2418–2428.MathSciNetCrossRef
27.
Zurück zum Zitat Ammari, H. M., & Das, S. K. (2012). Centralized and clustered k-coverage protocols for wireless sensor networks. IEEE Transactions on Computers, 61(1), 118–133.MathSciNetCrossRef Ammari, H. M., & Das, S. K. (2012). Centralized and clustered k-coverage protocols for wireless sensor networks. IEEE Transactions on Computers, 61(1), 118–133.MathSciNetCrossRef
28.
Zurück zum Zitat Junzhao, D., Wang, K., Liu, H., & Guo, D. (2013). Maximizing the lifetime of k-discrete barrier coverage using mobile sensors. IEEE Sensors Journal, 13(12), 4690–4701.CrossRef Junzhao, D., Wang, K., Liu, H., & Guo, D. (2013). Maximizing the lifetime of k-discrete barrier coverage using mobile sensors. IEEE Sensors Journal, 13(12), 4690–4701.CrossRef
29.
Zurück zum Zitat Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 619–632.CrossRef Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 619–632.CrossRef
30.
Zurück zum Zitat Xing, X., Wang, G., & Li, J. (2014). Polytype target coverage scheme for heterogeneous wireless sensor networks using linear programming. Wireless Communications and Mobile Computing., 14(8), 1397–1408.CrossRef Xing, X., Wang, G., & Li, J. (2014). Polytype target coverage scheme for heterogeneous wireless sensor networks using linear programming. Wireless Communications and Mobile Computing., 14(8), 1397–1408.CrossRef
31.
Zurück zum Zitat Sun, Z., Weiguo, W., Wang, H., Chen, H., & Xing, X. (2014). A novel coverage algorithm based on event-probability-driven mechanism in wireless sensor network. EURSIP Journal on Wireless Communications and Networking, 2014(1), 1–17.CrossRef Sun, Z., Weiguo, W., Wang, H., Chen, H., & Xing, X. (2014). A novel coverage algorithm based on event-probability-driven mechanism in wireless sensor network. EURSIP Journal on Wireless Communications and Networking, 2014(1), 1–17.CrossRef
32.
Zurück zum Zitat Wang, H., Meng, F., & Li, Z. (2010). Energy efficient coverage conserving protocol for wireless sensor networks. Journal of Software, 21(12), 3124–3137.CrossRef Wang, H., Meng, F., & Li, Z. (2010). Energy efficient coverage conserving protocol for wireless sensor networks. Journal of Software, 21(12), 3124–3137.CrossRef
33.
Zurück zum Zitat Cheng, T. M., & Savkin, A. V. (2009). A distributed self -deployment algorithm for the coverage of mobile wireless sensor networks. IEEE Communications Letters., 13(11), 877–879.CrossRef Cheng, T. M., & Savkin, A. V. (2009). A distributed self -deployment algorithm for the coverage of mobile wireless sensor networks. IEEE Communications Letters., 13(11), 877–879.CrossRef
34.
Zurück zum Zitat Abrar, H., Chakrabarti, S., & Biswas, P. K. (2012). Impact of sensing model on wireless sensor network coverage. IET Wireless Sensor Systems, 2(3), 272–281.CrossRef Abrar, H., Chakrabarti, S., & Biswas, P. K. (2012). Impact of sensing model on wireless sensor network coverage. IET Wireless Sensor Systems, 2(3), 272–281.CrossRef
35.
Zurück zum Zitat Yoon, Y., & Kim, Y. (2013). An efficient genetic algorithm for maximum coverage deployment in wireless sensor network. IEEE Transactions on Cybernetics., 45(5), 1473–1483.CrossRef Yoon, Y., & Kim, Y. (2013). An efficient genetic algorithm for maximum coverage deployment in wireless sensor network. IEEE Transactions on Cybernetics., 45(5), 1473–1483.CrossRef
36.
Zurück zum Zitat Sundhar Ram, S., Manjunath, D., & Lyer, S. K. (2007). On the path coverage properties of random sensor networks. IEEE Transactions on Mobile Computing, 6(5), 1–13.CrossRef Sundhar Ram, S., Manjunath, D., & Lyer, S. K. (2007). On the path coverage properties of random sensor networks. IEEE Transactions on Mobile Computing, 6(5), 1–13.CrossRef
37.
Zurück zum Zitat Cardei, M., & Jie, W. (2005). Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 29(4), 413–420.CrossRef Cardei, M., & Jie, W. (2005). Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 29(4), 413–420.CrossRef
38.
Zurück zum Zitat Zhao, Q., & Mohan, G. (2008). Lifetime maximization for connected target coverage in wireless sensor networks. IEEE/ACM Transactions on Networking, 16(6), 1378–1391.CrossRef Zhao, Q., & Mohan, G. (2008). Lifetime maximization for connected target coverage in wireless sensor networks. IEEE/ACM Transactions on Networking, 16(6), 1378–1391.CrossRef
39.
Zurück zum Zitat Jiang, H., Jin, S., & Wang, C. (2011). Prediction or not? An energy-efficient framework for clustering-based data collection in wireless sensor network. IEEE Transactions on Parallel and Distributed Systems, 22(6), 1064–1071.CrossRef Jiang, H., Jin, S., & Wang, C. (2011). Prediction or not? An energy-efficient framework for clustering-based data collection in wireless sensor network. IEEE Transactions on Parallel and Distributed Systems, 22(6), 1064–1071.CrossRef
40.
Zurück zum Zitat Zhu, J., & Xiaodong, H. (2008). Improved algorithm for minimum data aggregation time problem in wireless sensor networks. Journal of System Science & Complexity, 21(4), 626–636.MathSciNetCrossRefMATH Zhu, J., & Xiaodong, H. (2008). Improved algorithm for minimum data aggregation time problem in wireless sensor networks. Journal of System Science & Complexity, 21(4), 626–636.MathSciNetCrossRefMATH
41.
Zurück zum Zitat Xiaohua, X., Li, X., & Mao, X. (2011). A delay-efficient algorithm for data aggregation in multihop wireless sensor networks. IEEE Transaction on Parallel and Distributed Systems, 22(1), 163–175.CrossRef Xiaohua, X., Li, X., & Mao, X. (2011). A delay-efficient algorithm for data aggregation in multihop wireless sensor networks. IEEE Transaction on Parallel and Distributed Systems, 22(1), 163–175.CrossRef
42.
Zurück zum Zitat Lei, L., Lin, C., Cai, J., & Shen, X. (2009). Rerformance analysis of wireless opportunistic schedulers using stochastic petri nets. IEEE Transactions on Wireless Communications, 8(4), 2076–2087.CrossRef Lei, L., Lin, C., Cai, J., & Shen, X. (2009). Rerformance analysis of wireless opportunistic schedulers using stochastic petri nets. IEEE Transactions on Wireless Communications, 8(4), 2076–2087.CrossRef
43.
Zurück zum Zitat Yanwei, W., Li, X., & Liu, Y. (2010). Energy-efficient wake-up scheduling for data collection and aggregation. IEEE Transactions on Parallel and Distributed Systems, 21(2), 275–287.CrossRef Yanwei, W., Li, X., & Liu, Y. (2010). Energy-efficient wake-up scheduling for data collection and aggregation. IEEE Transactions on Parallel and Distributed Systems, 21(2), 275–287.CrossRef
44.
Zurück zum Zitat Jie, W., Fei, D., & Ming, G. (2002). On calculating power-aware connected dominating sets for efficient routing in ad hoc wireless network. Journal of Communications and Networks, 4(1), 1–12. Jie, W., Fei, D., & Ming, G. (2002). On calculating power-aware connected dominating sets for efficient routing in ad hoc wireless network. Journal of Communications and Networks, 4(1), 1–12.
45.
Zurück zum Zitat Oliveira, T., Raju, M., & Agrawal, D. P. (2012). Accurate distance estimation using fuzzy based combined RSSI/LQI values in an indoor scenario: Experimental verification. Network Protocols and Algorithms, 4(4), 174–199.CrossRef Oliveira, T., Raju, M., & Agrawal, D. P. (2012). Accurate distance estimation using fuzzy based combined RSSI/LQI values in an indoor scenario: Experimental verification. Network Protocols and Algorithms, 4(4), 174–199.CrossRef
46.
Zurück zum Zitat Elbes, M., Jordan, A., Fuqaha, A. A., & Anan, M. (2013). A precise indoor localization approach based on particle filter and dynamic exclusion techniques. Network Protocols and Algorithms, 5(2), 50–71.CrossRef Elbes, M., Jordan, A., Fuqaha, A. A., & Anan, M. (2013). A precise indoor localization approach based on particle filter and dynamic exclusion techniques. Network Protocols and Algorithms, 5(2), 50–71.CrossRef
47.
Zurück zum Zitat Lloret, J., Tomas, J., Garcia, M., & Canovas, A. (2009). Hybrid stochastic approach for self-location of wireless sensors in indoor environments. Sensors, 9(5), 3695–3712.CrossRef Lloret, J., Tomas, J., Garcia, M., & Canovas, A. (2009). Hybrid stochastic approach for self-location of wireless sensors in indoor environments. Sensors, 9(5), 3695–3712.CrossRef
48.
Zurück zum Zitat Sendra, S., Lloret, J., García, M., & Toledo, J. F. (2011). Power saving and energy optimization techniques for wireless sensor networks. Journal of Communications, 6(6), 439–459.CrossRef Sendra, S., Lloret, J., García, M., & Toledo, J. F. (2011). Power saving and energy optimization techniques for wireless sensor networks. Journal of Communications, 6(6), 439–459.CrossRef
49.
Zurück zum Zitat Wei, W., Qin, X., Wang, L., Hei, X., Shen, P., Shi, W., & Shan, L. (2014). GI/Geom/1 queue based on communication model for mesh networks. International Journal of Communication Systems, 27(11), 3013–3029. Wei, W., Qin, X., Wang, L., Hei, X., Shen, P., Shi, W., & Shan, L. (2014). GI/Geom/1 queue based on communication model for mesh networks. International Journal of Communication Systems, 27(11), 3013–3029.
50.
Zurück zum Zitat Jameii, S. M., Faez, K., & Dehghan, M. (2015). Multiobjective optimization for topology and coverage control in wireless sensor networks. International Journal of Distributed Sensor Networks, 1, 1–11. Jameii, S. M., Faez, K., & Dehghan, M. (2015). Multiobjective optimization for topology and coverage control in wireless sensor networks. International Journal of Distributed Sensor Networks, 1, 1–11.
51.
Zurück zum Zitat Wei, W., Yang, X., Zhou, B., Feng, J., & Shen, P. (2012). Combined energy minimization for image reconstruction from few views. Mathematical Problems in Engineering., 2012, 1–15.MathSciNetMATH Wei, W., Yang, X., Zhou, B., Feng, J., & Shen, P. (2012). Combined energy minimization for image reconstruction from few views. Mathematical Problems in Engineering., 2012, 1–15.MathSciNetMATH
Metadaten
Titel
CASMOC: a novel complex alliance strategy with multi-objective optimization of coverage in wireless sensor networks
verfasst von
Zeyu Sun
Yongsheng Zhang
Yalin Nie
Wei Wei
Jaime Lloret
Houbing Song
Publikationsdatum
09.02.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2017
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1213-3

Weitere Artikel der Ausgabe 4/2017

Wireless Networks 4/2017 Zur Ausgabe