Skip to main content
Erschienen in: Wireless Networks 5/2020

14.02.2020

A multi-tier based clustering framework for scalable and energy efficient WSN-assisted IoT network

verfasst von: Anurag Shukla, Sarsij Tripathi

Erschienen in: Wireless Networks | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effectiveness of wireless sensor network (WSN) in Internet of Thing (IoT) based large scale application depends on the deployment method along with the routing protocol. The sensor nodes are an important component of WSN-assisted IoT network running on limited and non-rechargeable energy resource. The performance of WSN-assisted IoT is decreased, when network is deployed at large area. So, developing robust and energy-efficient routing protocol is a challenging task to prolong the network lifetime. In contrast to the state-of-the-art techniques this paper introduces Scalable and energy efficient routing protocol (SEEP). SEEP leverages the multi-hop hierarchical routing scheme to minimize the energy consumption. To achieve scalable and energy efficient network, SEEP employs a multi-tier based clustering framework. The network area in SEEP is divided into various zones with the help of proposed subarea division algorithm. The number of zones in the network are increased as the network size increases to avoid long-distance communication. Every zone is divided into certain number of clusters (sub-zones) and the number of clusters are increased towards the base station, whereas the zone width is decreased. In every cluster, some of the optimal nodes are promoted as a Relay Node (RN) and Cluster Head (CH). Normal nodes send their sensed data to the base station via local RN and CH in a multi-hop way. Furthermore, propose protocol provides a trade-off between distance and energy to prolong the network lifetime. In the proposed framework, static and mobile scenarios have been considered by applying Random walk and Random waypoint model for node mobility in simulation to make it more realistic as the various application of WSN-assisted IoT. The effectiveness of SEEP is examined against LEACH, M-LEACH, EA-CRP, TDEEC, DEEC, SEP, and MIEEPB, and result indicates that SEEP performs better for different network metrics: network lifetime, scalability, and energy efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the Internet of Things: perspectives and challenges. Wireless Networks,20(8), 2481–2501.CrossRef Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the Internet of Things: perspectives and challenges. Wireless Networks,20(8), 2481–2501.CrossRef
2.
Zurück zum Zitat Tsai, C. W., Lai, C. F., & Vasilakos, A. V. (2014). Future Internet of Things: open issues and challenges. Wireless Networks,20(8), 2201–2217.CrossRef Tsai, C. W., Lai, C. F., & Vasilakos, A. V. (2014). Future Internet of Things: open issues and challenges. Wireless Networks,20(8), 2201–2217.CrossRef
3.
Zurück zum Zitat Oliveira, L. M., & Rodrigues, J. J. (2011). Wireless sensor networks: A survey on environmental monitoring. JCM,6(2), 143–151.CrossRef Oliveira, L. M., & Rodrigues, J. J. (2011). Wireless sensor networks: A survey on environmental monitoring. JCM,6(2), 143–151.CrossRef
4.
Zurück zum Zitat Guleria, K., & Verma, A. K. (2019). Comprehensive review for energy efficient hierarchical routing protocols on wireless sensor networks. Wireless Networks,25(3), 1159–1183.CrossRef Guleria, K., & Verma, A. K. (2019). Comprehensive review for energy efficient hierarchical routing protocols on wireless sensor networks. Wireless Networks,25(3), 1159–1183.CrossRef
5.
Zurück zum Zitat Zhao, N., Yu, F. R., & Sun, H. (2015). Adaptive energy-efficient power allocation in green interference-alignment-based wireless networks. IEEE Transactions on Vehicular Technology,64(9), 4268–4281.CrossRef Zhao, N., Yu, F. R., & Sun, H. (2015). Adaptive energy-efficient power allocation in green interference-alignment-based wireless networks. IEEE Transactions on Vehicular Technology,64(9), 4268–4281.CrossRef
6.
Zurück zum Zitat Tang, J., So, D. K., Zhao, N., Shojaeifard, A., & Wong, K. K. (2018). Energy efficiency optimization with SWIPT in MIMO broadcast channels for Internet of Things. IEEE Internet of Things Journal,5(4), 2605–2619.CrossRef Tang, J., So, D. K., Zhao, N., Shojaeifard, A., & Wong, K. K. (2018). Energy efficiency optimization with SWIPT in MIMO broadcast channels for Internet of Things. IEEE Internet of Things Journal,5(4), 2605–2619.CrossRef
7.
Zurück zum Zitat Bettstetter, C., Hartenstein, H., & Pérez-Costa, X. (2004). Stochastic properties of the random waypoint mobility model. Wireless Networks,10(5), 555–567.CrossRef Bettstetter, C., Hartenstein, H., & Pérez-Costa, X. (2004). Stochastic properties of the random waypoint mobility model. Wireless Networks,10(5), 555–567.CrossRef
8.
Zurück zum Zitat Cai, Y., Wang, X., Li, Z., & Fang, Y. (2014). Delay and capacity in MANETs under random walk mobility model. Wireless Networks,20(3), 525–536.CrossRef Cai, Y., Wang, X., Li, Z., & Fang, Y. (2014). Delay and capacity in MANETs under random walk mobility model. Wireless Networks,20(3), 525–536.CrossRef
9.
Zurück zum Zitat Hisham, M., Elmogy, A., Sarhan, A., & Sallm, A. (2019). Energy efficient scheduling in local area networks. Wireless Networks,20(3), 1–14. Hisham, M., Elmogy, A., Sarhan, A., & Sallm, A. (2019). Energy efficient scheduling in local area networks. Wireless Networks,20(3), 1–14.
10.
Zurück zum Zitat Yadav, R. N., Misra, R., & Saini, D. (2018). nergy aware cluster based routing protocol over distributed cognitive radio sensor network. Computer Communications,129, 54–66.CrossRef Yadav, R. N., Misra, R., & Saini, D. (2018). nergy aware cluster based routing protocol over distributed cognitive radio sensor network. Computer Communications,129, 54–66.CrossRef
11.
Zurück zum Zitat Darabkh, K. A., Al-Maaitah, N. J., Jafar, I. F., & Ala’F, K. (2018). EA-CRP: A novel energy-aware clustering and routing protocol in wireless sensor networks. Computers & Electrical Engineering,72, 702–718.CrossRef Darabkh, K. A., Al-Maaitah, N. J., Jafar, I. F., & Ala’F, K. (2018). EA-CRP: A novel energy-aware clustering and routing protocol in wireless sensor networks. Computers & Electrical Engineering,72, 702–718.CrossRef
12.
Zurück zum Zitat Darabkh, K. A., Hawa, M., Saifan, R., & Ala’F K. (2017). A novel clustering protocol for wireless sensor networks. In 2017 international conference on wireless communications, signal processing and networking (WiSPNET) (pp. 435–438), Chennai, India. IEEE. Darabkh, K. A., Hawa, M., Saifan, R., & Ala’F K. (2017). A novel clustering protocol for wireless sensor networks. In 2017 international conference on wireless communications, signal processing and networking (WiSPNET) (pp. 435–438), Chennai, India. IEEE.
13.
Zurück zum Zitat Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences, 2000 (pp. 10-pp). IEEE. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences, 2000 (pp. 10-pp). IEEE.
14.
Zurück zum Zitat Mhatre, V., & Rosenberg, C. (2004). Homogeneous vs heterogeneous clustered sensor networks: a comparative study. In ICC (pp. 3646–3651). Mhatre, V., & Rosenberg, C. (2004). Homogeneous vs heterogeneous clustered sensor networks: a comparative study. In ICC (pp. 3646–3651).
15.
Zurück zum Zitat Loscri, V., Morabito, G., & Marano, S. (2005). A two-levels hierarchy for low-energy adaptive clustering hierarchy (TLLEACH). In Vehicular Technology Conference, 2005. VTC- 2005-Fall. 2005 IEEE 62nd (Vol. 3, pp. 1809–1813). IEEE. Loscri, V., Morabito, G., & Marano, S. (2005). A two-levels hierarchy for low-energy adaptive clustering hierarchy (TLLEACH). In Vehicular Technology Conference, 2005. VTC- 2005-Fall. 2005 IEEE 62nd (Vol. 3, pp. 1809–1813). IEEE.
16.
Zurück zum Zitat Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,1(4), 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,1(4), 660–670.CrossRef
17.
Zurück zum Zitat Heinzelman, W.B. (2000). Application-specific protocol architectures for wire-less networks. Ph.D. dissertation, Massachusetts Institute of Technology, USA. Heinzelman, W.B. (2000). Application-specific protocol architectures for wire-less networks. Ph.D. dissertation, Massachusetts Institute of Technology, USA.
18.
Zurück zum Zitat Shah, T., Javaid, N., & Qureshi, T. N. (2012). Energy efficient sleep awake aware (EESAA) intelligent sensor network routing protocol. In 2012 15th international multitopic conference (INMIC) (pp. 317–322). IEEE. Shah, T., Javaid, N., & Qureshi, T. N. (2012). Energy efficient sleep awake aware (EESAA) intelligent sensor network routing protocol. In 2012 15th international multitopic conference (INMIC) (pp. 317–322). IEEE.
19.
Zurück zum Zitat Younis, O., & Fahmy, S. (2004). HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing,3(4), 366–379.CrossRef Younis, O., & Fahmy, S. (2004). HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing,3(4), 366–379.CrossRef
20.
Zurück zum Zitat Huang, J., Meng, Y., Gong, X., Liu, Y., & Duan, Q. (2014). A novel deployment scheme for green internet of things. IEEE Internet of Things Journal,1(2), 196–205.CrossRef Huang, J., Meng, Y., Gong, X., Liu, Y., & Duan, Q. (2014). A novel deployment scheme for green internet of things. IEEE Internet of Things Journal,1(2), 196–205.CrossRef
21.
Zurück zum Zitat Rani, S., Talwar, R., Malhotra, J., Ahmed, S. H., Sarkar, M., & Song, H. (2015). A novel scheme for an energy efficient Internet of Things based on wireless sensor networks. Sensors,15(11), 28603–28626.CrossRef Rani, S., Talwar, R., Malhotra, J., Ahmed, S. H., Sarkar, M., & Song, H. (2015). A novel scheme for an energy efficient Internet of Things based on wireless sensor networks. Sensors,15(11), 28603–28626.CrossRef
22.
Zurück zum Zitat Lindsey, S., & Raghavendra, C. S. (2002) PEGASIS: Powerefficient gathering in sensor information systems. In Aerospace conference proceedings, 2002. IEEE (Vol. 3, pp. 3–3). IEEE. Lindsey, S., & Raghavendra, C. S. (2002) PEGASIS: Powerefficient gathering in sensor information systems. In Aerospace conference proceedings, 2002. IEEE (Vol. 3, pp. 3–3). IEEE.
23.
Zurück zum Zitat Jafri, M. R., Javaid, N., Javaid, A., & Khan, Z. A. (2013). Maximizing the lifetime of multi-chain pegasis using sink mobility. arXiv preprint arXiv:1303.4347. Jafri, M. R., Javaid, N., Javaid, A., & Khan, Z. A. (2013). Maximizing the lifetime of multi-chain pegasis using sink mobility. arXiv preprint arXiv:1303.4347.
24.
Zurück zum Zitat Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. Boston: Boston University Computer Science Department. Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. Boston: Boston University Computer Science Department.
25.
Zurück zum Zitat Qing, L., Zhu, Q., & Wang, M. (2006). Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Computer Communications,29(12), 2230–2237.CrossRef Qing, L., Zhu, Q., & Wang, M. (2006). Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Computer Communications,29(12), 2230–2237.CrossRef
26.
Zurück zum Zitat Saini, P., & Sharma, A. K. (2010). Energy efficient scheme for clustering protocol prolonging the lifetime of heterogeneous wireless sensor networks. International Journal of computer applications,6(2), 30–36.CrossRef Saini, P., & Sharma, A. K. (2010). Energy efficient scheme for clustering protocol prolonging the lifetime of heterogeneous wireless sensor networks. International Journal of computer applications,6(2), 30–36.CrossRef
27.
Zurück zum Zitat Priyan, M. K., & Devi, G. U. (2017). Energy efficient node selection algorithm based on node performance index and random waypoint mobility model in internet of vehicles. Cluster Computing,21(1), 213–227.CrossRef Priyan, M. K., & Devi, G. U. (2017). Energy efficient node selection algorithm based on node performance index and random waypoint mobility model in internet of vehicles. Cluster Computing,21(1), 213–227.CrossRef
28.
Zurück zum Zitat Al-Turjman, F. M., Hassanein, H. S., & Ibnkahla, M. A. (2013). Efficient deployment of wireless sensor networks targeting environment monitoring applications. Computer Communications,36(2), 135–148.CrossRef Al-Turjman, F. M., Hassanein, H. S., & Ibnkahla, M. A. (2013). Efficient deployment of wireless sensor networks targeting environment monitoring applications. Computer Communications,36(2), 135–148.CrossRef
29.
Zurück zum Zitat Keertana, P., Vanathi, B., & Shanmugam, K. (2017). A survey on various animal health monitoring and tracking techniques. International Research Journal of Engineering and Technology,4(2), 533–536. Keertana, P., Vanathi, B., & Shanmugam, K. (2017). A survey on various animal health monitoring and tracking techniques. International Research Journal of Engineering and Technology,4(2), 533–536.
30.
Zurück zum Zitat Baskar, S., Shakeel, P. M., Kumar, R., Burhanuddin, M. A., & Sampath, R. (2020). A dynamic and interoperable communication framework for controlling the operations of wearable sensors in smart healthcare applications. Computer Communications,149, 17–26.CrossRef Baskar, S., Shakeel, P. M., Kumar, R., Burhanuddin, M. A., & Sampath, R. (2020). A dynamic and interoperable communication framework for controlling the operations of wearable sensors in smart healthcare applications. Computer Communications,149, 17–26.CrossRef
31.
Zurück zum Zitat Sajwan, M., Gosain, D., & Sharma, A. K. (2019). CAMP: cluster aided multi-path routing protocol for wireless sensor networks. Wireless Networks,25(5), 2603–2620.CrossRef Sajwan, M., Gosain, D., & Sharma, A. K. (2019). CAMP: cluster aided multi-path routing protocol for wireless sensor networks. Wireless Networks,25(5), 2603–2620.CrossRef
32.
Zurück zum Zitat Darabkh, K. A., El-Yabroudi, M. Z., & El-Mousa, A. H. (2019). BPA-CRP: A balanced power-aware clustering and routing protocol for wireless sensor networks. Ad Hoc Networks,82, 155–171.CrossRef Darabkh, K. A., El-Yabroudi, M. Z., & El-Mousa, A. H. (2019). BPA-CRP: A balanced power-aware clustering and routing protocol for wireless sensor networks. Ad Hoc Networks,82, 155–171.CrossRef
33.
Zurück zum Zitat Chang, H., & Tassiulas, L. (2000). Energy conserving routing in wireless ad-hoc networks. In Proceedings IEEE INFOCOM 2000. conference on computer communications. Nineteenth annual joint conference of the IEEE computer and communications societies (pp. 22–31). IEEE. Chang, H., & Tassiulas, L. (2000). Energy conserving routing in wireless ad-hoc networks. In Proceedings IEEE INFOCOM 2000. conference on computer communications. Nineteenth annual joint conference of the IEEE computer and communications societies (pp. 22–31). IEEE.
34.
Zurück zum Zitat Han, Z., Wu, J., Zhang, J., Liu, L., & Tian, K. (2014). A general selforganized tree-based energy-balance routing protocol for wireless sensor network. IEEE Transactions on Nuclear Science,61(2), 732–740.CrossRef Han, Z., Wu, J., Zhang, J., Liu, L., & Tian, K. (2014). A general selforganized tree-based energy-balance routing protocol for wireless sensor network. IEEE Transactions on Nuclear Science,61(2), 732–740.CrossRef
35.
Zurück zum Zitat Sajwan, M., Gosain, D., & Sharma, A. K. (2018). Hybrid energy-efficient multi-path routing for wireless sensor networks. Computers & Electrical Engineering,67, 96–113.CrossRef Sajwan, M., Gosain, D., & Sharma, A. K. (2018). Hybrid energy-efficient multi-path routing for wireless sensor networks. Computers & Electrical Engineering,67, 96–113.CrossRef
Metadaten
Titel
A multi-tier based clustering framework for scalable and energy efficient WSN-assisted IoT network
verfasst von
Anurag Shukla
Sarsij Tripathi
Publikationsdatum
14.02.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02277-4

Weitere Artikel der Ausgabe 5/2020

Wireless Networks 5/2020 Zur Ausgabe