Skip to main content
Erschienen in: Wireless Networks 1/2021

09.11.2020

Energy-efficient and fault-tolerant drone-BS placement in heterogeneous wireless sensor networks

verfasst von: Fatih Deniz, Hakki Bagci, Ibrahim Korpeoglu, Adnan Yazıcı

Erschienen in: Wireless Networks | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper introduces a distributed and energy-aware algorithm, called Minimum Drone Placement (MDP) algorithm, to determine the minimum number of base stations mounted on resource-rich Unmanned Aerial Vehicles (UAV-BS), commonly referred to as drone-BS, and their possible locations to provide fault tolerance with high network connectivity in heterogeneous wireless sensor networks. This heterogeneous model consists of resource-rich UAV-BSs, acting as gateways of data, as well as ordinary sensor nodes that are supposed to be connected to the UAV-BSs via multi-hop paths. Previous efforts on fault tolerance in heterogeneous wireless sensor networks attempt to determine transmission radii of the sensor nodes based on the already deployed base station positions. They assume that the base stations are stationary and arbitrarily deployed regardless of the position of the sensor nodes. Our proposed MDP algorithm takes into account the desired degree of fault tolerance and the position of ordinary sensor nodes to determine the optimal number of UAV-BSs and their locations. The MDP algorithm consists of two steps. In the first step, each sensor node chooses low-cost pairwise disjoint paths to a subset of candidate UAV-BSs, using an optimization based on the well-known set-packing problem. In the last step, depending on the desired degree of fault tolerance, MDP chooses a subset of these UAV-BS candidates using a novel optimization based on the well-known set-cover problem. Through extensive simulations, we demonstrate that the MDP achieves up to 40% improvement in UAV-connected lifetimes compared to a random and uniform distribution of UAV-BSs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Almasaeid, H.M., & Kamal, A.E. (2009). On the minimum k-connectivity repair in wireless sensor networks. In 2009 IEEE International Conference on Communications (pp. 1–5). Almasaeid, H.M., & Kamal, A.E. (2009). On the minimum k-connectivity repair in wireless sensor networks. In 2009 IEEE International Conference on Communications (pp. 1–5).
3.
Zurück zum Zitat Alzenad, M., El-Keyi, A., Lagum, F., & Yanikomeroglu, H. (2017). 3-d placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage. IEEE Wireless Communications Letters, 6(4), 434–437.CrossRef Alzenad, M., El-Keyi, A., Lagum, F., & Yanikomeroglu, H. (2017). 3-d placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage. IEEE Wireless Communications Letters, 6(4), 434–437.CrossRef
4.
Zurück zum Zitat Azharuddin, M., & Jana, P.K. (2015). A ga-based approach for fault tolerant relay node placement in wireless sensor networks. In Computer, Communication, Control and Information Technology (C3IT), 2015 3rd International Conference on (pp. 1–6). https://doi.org/10.1109/C3IT.2015.7060111. Azharuddin, M., & Jana, P.K. (2015). A ga-based approach for fault tolerant relay node placement in wireless sensor networks. In Computer, Communication, Control and Information Technology (C3IT), 2015 3rd International Conference on (pp. 1–6). https://​doi.​org/​10.​1109/​C3IT.​2015.​7060111.
5.
Zurück zum Zitat Bagci, H., Korpeoglu, I., & Yazıcı, A. (2014). A distributed fault-tolerant topology control algorithm for heterogeneous wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(4), 914–923.CrossRef Bagci, H., Korpeoglu, I., & Yazıcı, A. (2014). A distributed fault-tolerant topology control algorithm for heterogeneous wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(4), 914–923.CrossRef
8.
Zurück zum Zitat Bogdanov, A., Maneva, E., & Riesenfeld, S. (2004). Power-aware base station positioning for sensor networks. In INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies (Vol. 1, p. 585). Bogdanov, A., Maneva, E., & Riesenfeld, S. (2004). Power-aware base station positioning for sensor networks. In INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies (Vol. 1, p. 585).
10.
Zurück zum Zitat Cicek, C.T., Gultekin, H., Tavli, B., & Yanikomeroglu, H. (2019). Uav base station location optimization for next generation wireless networks: Overview and future research directions. In 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS) (pp. 1–6). Cicek, C.T., Gultekin, H., Tavli, B., & Yanikomeroglu, H. (2019). Uav base station location optimization for next generation wireless networks: Overview and future research directions. In 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS) (pp. 1–6).
11.
Zurück zum Zitat Dandekar, D.R., & Deshmukh, P.R. (2013). Energy balancing multiple sink optimal deployment in multi-hop wireless sensor networks. In Advance Computing Conference (IACC), 2013 IEEE 3rd International (pp. 408–412). Dandekar, D.R., & Deshmukh, P.R. (2013). Energy balancing multiple sink optimal deployment in multi-hop wireless sensor networks. In Advance Computing Conference (IACC), 2013 IEEE 3rd International (pp. 408–412).
12.
Zurück zum Zitat Das, D., Rehena, Z., Roy, S., & Mukherjee, N. (2013). Multiple-sink placement strategies in wireless sensor networks. In 2013 5th International Conference on Communication Systems and Networks (COMSNETS) (pp. 1–7). Das, D., Rehena, Z., Roy, S., & Mukherjee, N. (2013). Multiple-sink placement strategies in wireless sensor networks. In 2013 5th International Conference on Communication Systems and Networks (COMSNETS) (pp. 1–7).
14.
Zurück zum Zitat Deniz, F., Bagci, H., Korpeoglu, I., & Yazıcı, A. (2016). An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks. Ad Hoc Networks, 44, 104–117.CrossRef Deniz, F., Bagci, H., Korpeoglu, I., & Yazıcı, A. (2016). An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks. Ad Hoc Networks, 44, 104–117.CrossRef
15.
Zurück zum Zitat Dhillon, S. S., & Chakrabarty, K. (2003). Sensor placement for effective coverage and surveillance in distributed sensor networks. IEEE Wireless Communications and Networking, 3, 1609–1614. Dhillon, S. S., & Chakrabarty, K. (2003). Sensor placement for effective coverage and surveillance in distributed sensor networks. IEEE Wireless Communications and Networking, 3, 1609–1614.
16.
Zurück zum Zitat Haeyong, K., Taekyoung, K., & Pyeongsoo, M. (2008). Multiple sink positioning and routing to maximize the lifetime of sensor networks. IEICE Transactions on Communications, 91(11), 3499–3506. Haeyong, K., Taekyoung, K., & Pyeongsoo, M. (2008). Multiple sink positioning and routing to maximize the lifetime of sensor networks. IEICE Transactions on Communications, 91(11), 3499–3506.
17.
Zurück zum Zitat Hanh, N.T., Le Nguyen, P., Tuyen, P.T., Binh, H.T.T., Kurniawan, E., & Ji, Y. (2018). Node placement for target coverage and network connectivity in wsns with multiple sinks. In 2018 15th IEEE Annual Consumer Communications and Networking Conference (CCNC) (pp. 1–6). Hanh, N.T., Le Nguyen, P., Tuyen, P.T., Binh, H.T.T., Kurniawan, E., & Ji, Y. (2018). Node placement for target coverage and network connectivity in wsns with multiple sinks. In 2018 15th IEEE Annual Consumer Communications and Networking Conference (CCNC) (pp. 1–6).
18.
Zurück zum Zitat Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In System Sciences, 2000. Proceedings of the 33rd Annual Hawaii International Conference on (Vol. 2, p. 10). https://doi.org/10.1109/HICSS.2000.926982. Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In System Sciences, 2000. Proceedings of the 33rd Annual Hawaii International Conference on (Vol. 2, p. 10). https://​doi.​org/​10.​1109/​HICSS.​2000.​926982.
19.
Zurück zum Zitat Heinzelman, W., Chandrakasan, A., & Smith, A. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1, 660–670.CrossRef Heinzelman, W., Chandrakasan, A., & Smith, A. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1, 660–670.CrossRef
20.
Zurück zum Zitat Akyildiz, I. F., & Kasimoglu, I. H. (2004). Wireless sensor and actor networks: Research challenges. Ad Hoc Networks, 2(4), 351–367.CrossRef Akyildiz, I. F., & Kasimoglu, I. H. (2004). Wireless sensor and actor networks: Research challenges. Ad Hoc Networks, 2(4), 351–367.CrossRef
21.
Zurück zum Zitat Kalantari, E., Yanikomeroglu, H., & Yongacoglu, A. (2016). On the number and 3d placement of drone base stations in wireless cellular networks. In 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall) (pp. 1–6). Kalantari, E., Yanikomeroglu, H., & Yongacoglu, A. (2016). On the number and 3d placement of drone base stations in wireless cellular networks. In 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall) (pp. 1–6).
22.
Zurück zum Zitat Karp, R. (1972). Reducibility among combinatorial problems. In: R. Miller, J. Thatcher, & J. Bohlinger (Eds.), Complexity of Computer Computations, The IBM Research Symposia Series (pp. 85–103). US: Springer. Karp, R. (1972). Reducibility among combinatorial problems. In: R. Miller, J. Thatcher, & J. Bohlinger (Eds.), Complexity of Computer Computations, The IBM Research Symposia Series (pp. 85–103). US: Springer.
23.
Zurück zum Zitat Kashyap, A., Khuller, S., & Shayman, M. (2006). Relay placement for higher order connectivity in wireless sensor networks. In INFOCOM 2006. Twenty Fifth IEEE International Conference on Computer Communications. Proceedings (pp. 1–12). Kashyap, A., Khuller, S., & Shayman, M. (2006). Relay placement for higher order connectivity in wireless sensor networks. In INFOCOM 2006. Twenty Fifth IEEE International Conference on Computer Communications. Proceedings (pp. 1–12).
24.
Zurück zum Zitat Kim, H., Ben-Othman, J., & Bellavista, P. (2017). Collision-free reinforced barriers in UAV networks. Journal of Computational Science, 22, 289–300.CrossRef Kim, H., Ben-Othman, J., & Bellavista, P. (2017). Collision-free reinforced barriers in UAV networks. Journal of Computational Science, 22, 289–300.CrossRef
25.
Zurück zum Zitat Kim, H., & Cobb, J. A. (2015). Optimization algorithms for transmission range and actor movement in wireless sensor and actor networks. Computer Networks, 92, 116–133.CrossRef Kim, H., & Cobb, J. A. (2015). Optimization algorithms for transmission range and actor movement in wireless sensor and actor networks. Computer Networks, 92, 116–133.CrossRef
26.
Zurück zum Zitat Kim, S., Ko, J.G., Yoon, J., & Lee, H. (2007). Multiple-objective metric for placing multiple base stations in wireless sensor networks. In 2007 2nd International Symposium on Wireless Pervasive Computing (pp. 627–631). Kim, S., Ko, J.G., Yoon, J., & Lee, H. (2007). Multiple-objective metric for placing multiple base stations in wireless sensor networks. In 2007 2nd International Symposium on Wireless Pervasive Computing (pp. 627–631).
27.
Zurück zum Zitat Korte, B., & Vygen, J. (2012). Combinatorial optimization: theory and algorithms (5th ed.). Berlin: Springer.CrossRef Korte, B., & Vygen, J. (2012). Combinatorial optimization: theory and algorithms (5th ed.). Berlin: Springer.CrossRef
28.
Zurück zum Zitat Lin, G. H., & Xue, G. (1999). Steiner tree problem with minimum number of Steiner points and bounded edge-length. Information Processing Letters, 69(2), 53–57.MathSciNetCrossRef Lin, G. H., & Xue, G. (1999). Steiner tree problem with minimum number of Steiner points and bounded edge-length. Information Processing Letters, 69(2), 53–57.MathSciNetCrossRef
29.
Zurück zum Zitat Liu, B., Zhu, Q., & Zhu, H. (2020). Trajectory optimization and resource allocation for UAV-assisted relaying communications. Wireless Networks, 26(1), 739–749.CrossRef Liu, B., Zhu, Q., & Zhu, H. (2020). Trajectory optimization and resource allocation for UAV-assisted relaying communications. Wireless Networks, 26(1), 739–749.CrossRef
30.
31.
Zurück zum Zitat Lloyd, E., & Xue, G. (2007). Relay node placement in wireless sensor networks. IEEE Transactions Computers, 56(1), 134–138.MathSciNetCrossRef Lloyd, E., & Xue, G. (2007). Relay node placement in wireless sensor networks. IEEE Transactions Computers, 56(1), 134–138.MathSciNetCrossRef
32.
35.
Zurück zum Zitat Oyman, E.I., & Ersoy, C. (2004). Multiple sink network design problem in large scale wireless sensor networks. In Communications, 2004 IEEE International Conference on (Vol. 6, pp. 3663–3667). Oyman, E.I., & Ersoy, C. (2004). Multiple sink network design problem in large scale wireless sensor networks. In Communications, 2004 IEEE International Conference on (Vol. 6, pp. 3663–3667).
36.
Zurück zum Zitat Pardesi, P., & Grover, J. (2015). Improved multiple sink placement strategy in wireless sensor networks. In Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE), 2015 International Conference on (pp. 418–424). Pardesi, P., & Grover, J. (2015). Improved multiple sink placement strategy in wireless sensor networks. In Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE), 2015 International Conference on (pp. 418–424).
37.
Zurück zum Zitat Poe, W. Y., & Schmitt, J. B. (2007). Minimizing the maximum delay in wireless sensor networks by intelligent sink placement. Distributed Computer Systems Lab University of Kaiserslautern, 67655, 1–20. Poe, W. Y., & Schmitt, J. B. (2007). Minimizing the maximum delay in wireless sensor networks by intelligent sink placement. Distributed Computer Systems Lab University of Kaiserslautern, 67655, 1–20.
38.
Zurück zum Zitat Qiu, L., Chandra, R., Jain, K., & Mahdian, M. (2004). Optimizing the placement of integration points in multi-hop wireless networks. Proceedings of ICNP, 4, 271–282. Qiu, L., Chandra, R., Jain, K., & Mahdian, M. (2004). Optimizing the placement of integration points in multi-hop wireless networks. Proceedings of ICNP, 4, 271–282.
39.
Zurück zum Zitat Rehana, R.T., Maneesha, R.V., & Sangeeth, K. (2008). Fault tolerant clustering approaches in wireless sensor network for landslide area monitoring. In The International Conference on Wireless Networks (pp. 107–113). Rehana, R.T., Maneesha, R.V., & Sangeeth, K. (2008). Fault tolerant clustering approaches in wireless sensor network for landslide area monitoring. In The International Conference on Wireless Networks (pp. 107–113).
40.
Zurück zum Zitat Safa, H., El-Hajj, W., & Zoubian, H. (2014). A robust topology control solution for the sink placement problem in wsns. Journal of Network and Computer Applications, 39, 70–82.CrossRef Safa, H., El-Hajj, W., & Zoubian, H. (2014). A robust topology control solution for the sink placement problem in wsns. Journal of Network and Computer Applications, 39, 70–82.CrossRef
41.
Zurück zum Zitat Senel, F., & Younis, M. (2016). Novel relay node placement algorithms for establishing connected topologies. Journal of Network and Computer Applications, 70, 114–130.CrossRef Senel, F., & Younis, M. (2016). Novel relay node placement algorithms for establishing connected topologies. Journal of Network and Computer Applications, 70, 114–130.CrossRef
42.
Zurück zum Zitat Sitanayah, L., Brown, K. N., & Sreenan, C. J. (2014). A fault-tolerant relay placement algorithm for ensuring k vertex-disjoint shortest paths in wireless sensor networks. Ad Hoc Networks, 23, 145–162.CrossRef Sitanayah, L., Brown, K. N., & Sreenan, C. J. (2014). A fault-tolerant relay placement algorithm for ensuring k vertex-disjoint shortest paths in wireless sensor networks. Ad Hoc Networks, 23, 145–162.CrossRef
43.
Zurück zum Zitat Sitanayah, L., Brown, K. N., & Sreenan, C. J. (2015). Planning the deployment of multiple sinks and relays in wireless sensor networks. Journal of Heuristics, 21(2), 197–232.CrossRef Sitanayah, L., Brown, K. N., & Sreenan, C. J. (2015). Planning the deployment of multiple sinks and relays in wireless sensor networks. Journal of Heuristics, 21(2), 197–232.CrossRef
45.
Zurück zum Zitat Xu, X., Liang, W. (2011). Placing optimal number of sinks in sensor networks for network lifetime maximization. In 2011 IEEE International Conference on Communications (ICC) (pp. 1–6). Xu, X., Liang, W. (2011). Placing optimal number of sinks in sensor networks for network lifetime maximization. In 2011 IEEE International Conference on Communications (ICC) (pp. 1–6).
46.
Zurück zum Zitat Youssef, W., & Younis, M. (2007). Intelligent gateways placement for reduced data latency in wireless sensor networks. In 2007 IEEE International Conference on Communications (pp. 3805–3810). Youssef, W., & Younis, M. (2007). Intelligent gateways placement for reduced data latency in wireless sensor networks. In 2007 IEEE International Conference on Communications (pp. 3805–3810).
47.
Zurück zum Zitat Zhao, H., Wang, H., Wu, W., & Wei, J. (2018). Deployment algorithms for UAV airborne networks toward on-demand coverage. IEEE Journal on Selected Areas in Communications, 36(9), 2015–2031.CrossRef Zhao, H., Wang, H., Wu, W., & Wei, J. (2018). Deployment algorithms for UAV airborne networks toward on-demand coverage. IEEE Journal on Selected Areas in Communications, 36(9), 2015–2031.CrossRef
Metadaten
Titel
Energy-efficient and fault-tolerant drone-BS placement in heterogeneous wireless sensor networks
verfasst von
Fatih Deniz
Hakki Bagci
Ibrahim Korpeoglu
Adnan Yazıcı
Publikationsdatum
09.11.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 1/2021
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02494-x

Weitere Artikel der Ausgabe 1/2021

Wireless Networks 1/2021 Zur Ausgabe