Skip to main content
Erschienen in: Wireless Networks 4/2021

07.05.2021 | Original Paper

UWB anchor nodes self-calibration in NLOS conditions: a machine learning and adaptive PHY error correction approach

verfasst von: Matteo Ridolfi, Jaron Fontaine, Ben Van Herbruggen, Wout Joseph, Jeroen Hoebeke, Eli De Poorter

Erschienen in: Wireless Networks | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ultra-wideband (UWB) positioning performance is highly related to the accuracy of the coordinates of the fixed anchor nodes, which form the system infrastructure. The process of determining the position of the anchors is called calibration. In an anchor-based system, it is crucial for the fixed nodes to know their locations with the highest possible accuracy. However, in certain situations, it is almost impossible to perform the calibration manually, e.g., during emergency interventions. Moreover, calibration is always delicate and time-consuming. We designed an effortless and accurate self-calibration algorithm that does not require any manual intervention to precisely pinpoint the position of the anchors. This paper presents an innovative algorithm that combines machine learning and exploits the time resolution capabilities of UWB with adaptive physical settings to enable the automatic calibration of the fixed anchor nodes, even in realistic NLOS (non-line-of-sight) conditions. The self-calibration algorithm combines iterative gradient descent to pinpoint the positions of the anchors and uses error detection and correction from a convolutional neural network. Moreover, the algorithm can use a different set of settings for each anchor pair. This is done to ensure the most robust and accurate communication between nodes. Extensive measurements were carried out to allow anchors to estimate distances among each others. Distances were then combined and processed by the self-calibration algorithm. Experimental evaluation in two complex and large environments with many obstacles and reflections shows that accuracy reached by the algorithm is about 2.4 cm on average and 95th percentile is 5.7 cm, in best case. The results refer to the relative positions among the anchors. Results prove that in order to precisely calibrate the anchors nodes in an UWB positioning system, high correctness can be obtained by combining the accuracy of UWB together with deep learning and adaptive PHY modulation schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Basri, C., & El Khadimi, A. (2016). Survey on indoor localization system and recent advances of WIFI fingerprinting technique. In: Proceedings of the 2016 5th international conference on multimedia computing and systems (ICMCS) (IEEE), pp. 253–259. Basri, C., & El Khadimi, A. (2016). Survey on indoor localization system and recent advances of WIFI fingerprinting technique. In: Proceedings of the 2016 5th international conference on multimedia computing and systems (ICMCS) (IEEE), pp. 253–259.
2.
Zurück zum Zitat Shi, G., & Ming, Y. (2016). Survey of indoor positioning systems based on ultra-wideband (UWB) technology. In: Wireless communications, networking and applications (pp. 1269–1278). New York: Springer Shi, G., & Ming, Y. (2016). Survey of indoor positioning systems based on ultra-wideband (UWB) technology. In: Wireless communications, networking and applications (pp. 1269–1278). New York: Springer
3.
Zurück zum Zitat Xiao, J., Zhou, Z., Yi, Y., & Ni, L. M. (2016). A survey on wireless indoor localization from the device perspective. ACM Computing Surveys (CSUR), 49(2), 1.CrossRef Xiao, J., Zhou, Z., Yi, Y., & Ni, L. M. (2016). A survey on wireless indoor localization from the device perspective. ACM Computing Surveys (CSUR), 49(2), 1.CrossRef
4.
Zurück zum Zitat Wolf, P. R. (2002). wolf2002surveying. Journal of Surveying Engineering, 128(3), 79.CrossRef Wolf, P. R. (2002). wolf2002surveying. Journal of Surveying Engineering, 128(3), 79.CrossRef
5.
Zurück zum Zitat Ridolfi, M., Vandermeeren, S., Defraye, J., Steendam, H., Gerlo, J., De Clercq, D., et al. (2018). Edge inference for UWB ranging error correction using autoencoders. Sensors, 18(1), 168.CrossRef Ridolfi, M., Vandermeeren, S., Defraye, J., Steendam, H., Gerlo, J., De Clercq, D., et al. (2018). Edge inference for UWB ranging error correction using autoencoders. Sensors, 18(1), 168.CrossRef
6.
Zurück zum Zitat Witrisal, K., Hinteregger, S., Kulmer, J., Leitinger, E., & Meissner, P. (2016). High-accuracy positioning for indoor applications: RFID, UWB, 5G, and beyond. In: Proceedings of the 2016 IEEE international conference on RFID (RFID) (IEEE), pp. 1–7. Witrisal, K., Hinteregger, S., Kulmer, J., Leitinger, E., & Meissner, P. (2016). High-accuracy positioning for indoor applications: RFID, UWB, 5G, and beyond. In: Proceedings of the 2016 IEEE international conference on RFID (RFID) (IEEE), pp. 1–7.
7.
Zurück zum Zitat Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M. A., & Al-Khalifa, H. S. (2016). Ultra wideband indoor positioning technologies: analysis and recent advances. Sensors, 16(5), 707.CrossRef Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M. A., & Al-Khalifa, H. S. (2016). Ultra wideband indoor positioning technologies: analysis and recent advances. Sensors, 16(5), 707.CrossRef
8.
Zurück zum Zitat Ruiz, A. R. J., & Granja, F. S. (2017). Comparing ubisense, bespoon, and decawave uwb location systems: indoor performance analysis. IEEE Transactions on Instrumentation and Measurement, 66(8), 2106.CrossRef Ruiz, A. R. J., & Granja, F. S. (2017). Comparing ubisense, bespoon, and decawave uwb location systems: indoor performance analysis. IEEE Transactions on Instrumentation and Measurement, 66(8), 2106.CrossRef
9.
Zurück zum Zitat Andrews, J.R. (2003). UWB signal sources, antennas and propagation. In: Proceedings of the 2003 IEEE topical conference on wireless communication technology (IEEE), pp. 439–440. Andrews, J.R. (2003). UWB signal sources, antennas and propagation. In: Proceedings of the 2003 IEEE topical conference on wireless communication technology (IEEE), pp. 439–440.
10.
Zurück zum Zitat Moses, R. L., Krishnamurthy, D., & Patterson, R. M. (2003). A self-localization method for wireless sensor networks. EURASIP Journal on Advances in Signal Processing, 2003(4), 839843.CrossRef Moses, R. L., Krishnamurthy, D., & Patterson, R. M. (2003). A self-localization method for wireless sensor networks. EURASIP Journal on Advances in Signal Processing, 2003(4), 839843.CrossRef
11.
Zurück zum Zitat Xu, L., Yao, L., He, J., Wang, P., Long, K., & Wang, Q. (2018). Collaborative geolocation based on imprecise initial coordinates for internet of things. IEEE Access, 6, 48850.CrossRef Xu, L., Yao, L., He, J., Wang, P., Long, K., & Wang, Q. (2018). Collaborative geolocation based on imprecise initial coordinates for internet of things. IEEE Access, 6, 48850.CrossRef
12.
Zurück zum Zitat Gualda, D., Ureña, J., Alcalá, J., & Santos, C. (2019). Calibration of beacons for indoor environments based on a digital map and heuristic information. Sensors, 19(3), 670.CrossRef Gualda, D., Ureña, J., Alcalá, J., & Santos, C. (2019). Calibration of beacons for indoor environments based on a digital map and heuristic information. Sensors, 19(3), 670.CrossRef
13.
Zurück zum Zitat Batstone, K., Oskarsson, M., & Åström, K. (2017). Towards real-time time-of-arrival self-calibration using ultra-wideband anchors. In: Proceedings of the 2017 international conference on indoor positioning and indoor navigation (IPIN) (IEEE), pp. 1–8. Batstone, K., Oskarsson, M., & Åström, K. (2017). Towards real-time time-of-arrival self-calibration using ultra-wideband anchors. In: Proceedings of the 2017 international conference on indoor positioning and indoor navigation (IPIN) (IEEE), pp. 1–8.
14.
Zurück zum Zitat Hamer, M., & D’Andrea, R. (2018). Self-calibrating ultra-wideband network supporting multi-robot localization. IEEE Access, 6, 22292.CrossRef Hamer, M., & D’Andrea, R. (2018). Self-calibrating ultra-wideband network supporting multi-robot localization. IEEE Access, 6, 22292.CrossRef
15.
Zurück zum Zitat Vashistha, A., Gupta, A., & Law, C.L. (2018) Self calibration of the anchor nodes for UWB-IR TDOA based indoor positioning system. In: Proceedings of the 2018 IEEE 4th world forum on internet of things (WF-IoT) (IEEE), pp. 688–693. Vashistha, A., Gupta, A., & Law, C.L. (2018) Self calibration of the anchor nodes for UWB-IR TDOA based indoor positioning system. In: Proceedings of the 2018 IEEE 4th world forum on internet of things (WF-IoT) (IEEE), pp. 688–693.
16.
Zurück zum Zitat Shi, Q., Zhao, S., Oui, X., Lu, M., & Jia, M. (2019). Anchor self-localization algorithm based on UWB ranging and inertial measurements. Tsinghua Science and Technology, 24(6), 728.CrossRef Shi, Q., Zhao, S., Oui, X., Lu, M., & Jia, M. (2019). Anchor self-localization algorithm based on UWB ranging and inertial measurements. Tsinghua Science and Technology, 24(6), 728.CrossRef
17.
Zurück zum Zitat De Preter, A., Goysensn G., Anthonis, J., Swevers, J., & Pipeleers, G. (2019) Range bias modeling and autocalibration of an UWB positioning system. In: Proceedings of the 2019 international conference on indoor positioning and indoor navigation (IPIN) (IEEE), pp. 1–8. De Preter, A., Goysensn G., Anthonis, J., Swevers, J., & Pipeleers, G. (2019) Range bias modeling and autocalibration of an UWB positioning system. In: Proceedings of the 2019 international conference on indoor positioning and indoor navigation (IPIN) (IEEE), pp. 1–8.
19.
Zurück zum Zitat Almansa, C. M., Shule, W, Queralta, J. P., & Westerlund, T. (2020). Autocalibration of a mobile UWB localization system for ad-hoc multi-robot deployments in GNSS-denied environments. arXiv preprint arXiv:2004.06762. Almansa, C. M., Shule, W, Queralta, J. P., & Westerlund, T. (2020). Autocalibration of a mobile UWB localization system for ad-hoc multi-robot deployments in GNSS-denied environments. arXiv preprint arXiv:​2004.​06762.
20.
Zurück zum Zitat European Telecommunications Standards Institute, Short Range Devices (SRD) using Ultra Wide Band technology (UWB); Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU; Part 2: Requirements for UWB location tracking. Standard, European Telecommunications Standards Institute (2016) European Telecommunications Standards Institute, Short Range Devices (SRD) using Ultra Wide Band technology (UWB); Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU; Part 2: Requirements for UWB location tracking. Standard, European Telecommunications Standards Institute (2016)
21.
Zurück zum Zitat Muqaibel, A., Safaai-Jazi, A., Woerner, B., & Riad, S. (2002). UWB channel impulse response characterization using deconvolution techniques. In: The 2002 45th midwest symposium on circuits and systems, 2002. MWSCAS-2002., (IEEE), vol. 3, pp. III–605. Muqaibel, A., Safaai-Jazi, A., Woerner, B., & Riad, S. (2002). UWB channel impulse response characterization using deconvolution techniques. In: The 2002 45th midwest symposium on circuits and systems, 2002. MWSCAS-2002., (IEEE), vol. 3, pp. III–605.
22.
Zurück zum Zitat Krishnan, S., Xenia Mendoza Santos, R., Ranier Yap, E., & Thu Zin, M. (2018). Improving UWB based indoor positioning in industrial environments through machine learning. In: Proceedings of the 2018 15th international conference on control, automation, robotics and vision (ICARCV), pp. 1484–1488. https://doi.org/10.1109/ICARCV.2018.8581305. Krishnan, S., Xenia Mendoza Santos, R., Ranier Yap, E., & Thu Zin, M. (2018). Improving UWB based indoor positioning in industrial environments through machine learning. In: Proceedings of the 2018 15th international conference on control, automation, robotics and vision (ICARCV), pp. 1484–1488. https://​doi.​org/​10.​1109/​ICARCV.​2018.​8581305.
23.
Zurück zum Zitat Kristensen, J. B., Massanet Ginard, M., Jensen, O. K., & Shen, M. (2019). Non-line-of-sight identification for UWB indoor positioning systems using support vector machines. In: Proceedings of the 2019 IEEE MTT-S International Wireless Symposium (IWS), pp. 1–3. https://doi.org/10.1109/IEEE-IWS.2019.8804072. Kristensen, J. B., Massanet Ginard, M., Jensen, O. K., & Shen, M. (2019). Non-line-of-sight identification for UWB indoor positioning systems using support vector machines. In: Proceedings of the 2019 IEEE MTT-S International Wireless Symposium (IWS), pp. 1–3. https://​doi.​org/​10.​1109/​IEEE-IWS.​2019.​8804072.
26.
Zurück zum Zitat Li, Weijie, Zhang, Tingting, & Zhang, Qinyu (2013). Experimental researches on an UWB NLOS identification method based on machine learning. In: Proceedings of the 2013 15th IEEE international conference on communication technology, pp. 473–477. https://doi.org/10.1109/ICCT.2013.6820422. Li, Weijie, Zhang, Tingting, & Zhang, Qinyu (2013). Experimental researches on an UWB NLOS identification method based on machine learning. In: Proceedings of the 2013 15th IEEE international conference on communication technology, pp. 473–477. https://​doi.​org/​10.​1109/​ICCT.​2013.​6820422.
29.
Zurück zum Zitat De Poorter, E., Van Haute, T., Laermans, E., & Moerman, I. (2017). Benchmarking of localization solutions: guidelines for the selection of evaluation points. Ad Hoc Networks, 59, 86.CrossRef De Poorter, E., Van Haute, T., Laermans, E., & Moerman, I. (2017). Benchmarking of localization solutions: guidelines for the selection of evaluation points. Ad Hoc Networks, 59, 86.CrossRef
30.
Zurück zum Zitat Macoir, N., Bauwens, J., Jooris, B., Van Herbruggen, B., Rossey, J., Hoebeke, J., & De Poorter, E. (2019). Uwb localization with battery-powered wireless backbone for drone-based inventory management. Sensors, 19(3), 467.CrossRef Macoir, N., Bauwens, J., Jooris, B., Van Herbruggen, B., Rossey, J., Hoebeke, J., & De Poorter, E. (2019). Uwb localization with battery-powered wireless backbone for drone-based inventory management. Sensors, 19(3), 467.CrossRef
31.
Zurück zum Zitat Fontaine, J., Ridolfi, M., Van Herbruggen, B., Shahid, A., & De Poorter, E. (2020). Edge inference for UWB ranging error correction using autoencoders. IEEE Access, 8, 139143.CrossRef Fontaine, J., Ridolfi, M., Van Herbruggen, B., Shahid, A., & De Poorter, E. (2020). Edge inference for UWB ranging error correction using autoencoders. IEEE Access, 8, 139143.CrossRef
33.
Zurück zum Zitat Malajner, M., Planinšič, P., & Gleich, D. (2015). UWB ranging accuracy. In: Proceedings of the 2015 International Conference on Systems, Signals and Image Processing (IWSSIP) (IEEE), pp. 61–64. Malajner, M., Planinšič, P., & Gleich, D. (2015). UWB ranging accuracy. In: Proceedings of the 2015 International Conference on Systems, Signals and Image Processing (IWSSIP) (IEEE), pp. 61–64.
34.
Zurück zum Zitat Silva, B., & Hancke, G. P. (2016). IR-UWB-based non-line-of-sight identification in harsh environments: principles and challenges. IEEE Transactions on Industrial Informatics, 12(3), 1188.CrossRef Silva, B., & Hancke, G. P. (2016). IR-UWB-based non-line-of-sight identification in harsh environments: principles and challenges. IEEE Transactions on Industrial Informatics, 12(3), 1188.CrossRef
35.
Zurück zum Zitat Silva, B., Pang, Z., Åkerberg, J., Neander, J., & Hancke, G. (2014). Experimental study of UWB-based high precision localization for industrial applications. In: Proceedings of the 2014 IEEE International Conference on Ultra-WideBand (ICUWB) (IEEE), pp. 280–285. Silva, B., Pang, Z., Åkerberg, J., Neander, J., & Hancke, G. (2014). Experimental study of UWB-based high precision localization for industrial applications. In: Proceedings of the 2014 IEEE International Conference on Ultra-WideBand (ICUWB) (IEEE), pp. 280–285.
36.
Zurück zum Zitat Großwindhager, B., Boano, C. A., Rath, M., & Römer, K. (2018). Enabling runtime adaptation of physical layer settings for dependable uwb communications. In: Proceedings of the 2018 IEEE 19th International Symposium on” A World of Wireless, Mobile and Multimedia Networks”(WoWMoM) (IEEE), pp. 01–11. Großwindhager, B., Boano, C. A., Rath, M., & Römer, K. (2018). Enabling runtime adaptation of physical layer settings for dependable uwb communications. In: Proceedings of the 2018 IEEE 19th International Symposium on” A World of Wireless, Mobile and Multimedia Networks”(WoWMoM) (IEEE), pp. 01–11.
38.
Zurück zum Zitat Van Herbruggen, B., Jooris, B., Rossey, J., Ridolfi, M., Macoir, N., Van den Brande, Q., et al. (2019). Wi-PoS: a low-cost, open source ultra-wideband (UWB) hardware platform with long range sub-GHz backbone. Sensors, 19(7), 1548.CrossRef Van Herbruggen, B., Jooris, B., Rossey, J., Ridolfi, M., Macoir, N., Van den Brande, Q., et al. (2019). Wi-PoS: a low-cost, open source ultra-wideband (UWB) hardware platform with long range sub-GHz backbone. Sensors, 19(7), 1548.CrossRef
39.
Zurück zum Zitat Kreiser, D., Martynenko, D., Klymenko, O., & Fischer, G. (2015). Simple and efficient localization method for IR-UWB systems based on two-way ranging. In: Proceedings of the 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM) (IEEE), pp. 1–4. Kreiser, D., Martynenko, D., Klymenko, O., & Fischer, G. (2015). Simple and efficient localization method for IR-UWB systems based on two-way ranging. In: Proceedings of the 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM) (IEEE), pp. 1–4.
Metadaten
Titel
UWB anchor nodes self-calibration in NLOS conditions: a machine learning and adaptive PHY error correction approach
verfasst von
Matteo Ridolfi
Jaron Fontaine
Ben Van Herbruggen
Wout Joseph
Jeroen Hoebeke
Eli De Poorter
Publikationsdatum
07.05.2021
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2021
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-021-02631-0

Weitere Artikel der Ausgabe 4/2021

Wireless Networks 4/2021 Zur Ausgabe