Skip to main content
Erschienen in: Wireless Networks 7/2021

07.08.2021 | Original Paper

Delay-aware application offloading in fog environment using multi-class Brownian model

verfasst von: Naveen Chauhan, Haider Banka, Rajeev Agrawal

Erschienen in: Wireless Networks | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the era of technology, compact and low-powered IoT devices have become an integral part of the daily routines of various sectors such as healthcare, education, industries, defense, and agriculture, etc. The IoT has increased the flow of enormous data from one network to another and extended the dependability of the public networks. In health applications, this dependency can cause excessive packets to be lost and prolonged waiting, which can cause sensitive applications to suffer. The authors suggested fog computing as a potential middle layer in the delay-aware computational system in existing works. There are many issues with the cloud-based computation model, such as location awareness, long-distance communication path, and unmanageable network bandwidth. These parameters can be solved using a fog computing model, which helps achieve ultra-low latency and minimum service delivery time. However, task offloading and scheduling are significant open research issues concerning resource management and allocation in a cloud-fog system. This paper presents a delay-aware application offloading focusing on reducing the response time and maximizing the system performance. Our proposed model developed a multiclass open queueing model that maintains the traffic on different queues, aiming to achieve maximum system performance. The simulation results demonstrate that our proposed model DAAO (Delay-aware application offloading) yields a performance improvement of 14.30% service rate and minimized failure rate by 2.0%. The simulation results supported the robustness of the proposed model in terms of minimum response time and maximum success rate. Our proposed model achieves a better tradeoff than existing work in terms of offloading and minimum failure rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Noura, M., Atiquzzaman, M., & Gaedke, M. (2019). Interoperability in internet of things: taxonomies and open challenges. Mobile Networks and Applications, 24, 796–809.CrossRef Noura, M., Atiquzzaman, M., & Gaedke, M. (2019). Interoperability in internet of things: taxonomies and open challenges. Mobile Networks and Applications, 24, 796–809.CrossRef
2.
Zurück zum Zitat Gedeon, J., Brandherm, F., Egert, R., Grube, T., & Muhlhauser, M. (2019). What the Fog? edge computing revisited: promises, applications and future challenges. IEEE Access, 7, 152847–152878.CrossRef Gedeon, J., Brandherm, F., Egert, R., Grube, T., & Muhlhauser, M. (2019). What the Fog? edge computing revisited: promises, applications and future challenges. IEEE Access, 7, 152847–152878.CrossRef
3.
Zurück zum Zitat Sun, Y., Wei, T., Li, H., Zhang, Y., & Wu, W. (2020). Energy-efficient multimedia task assignment and computing offloading for mobile edge computing networks. IEEE Access, 8, 36702–36713.CrossRef Sun, Y., Wei, T., Li, H., Zhang, Y., & Wu, W. (2020). Energy-efficient multimedia task assignment and computing offloading for mobile edge computing networks. IEEE Access, 8, 36702–36713.CrossRef
4.
Zurück zum Zitat Sufyan, F., & Banerjee, A. (2020). Computation offloading for distributed mobile edge computing network: a multiobjective approach. IEEE Access, 8, 149915–149930.CrossRef Sufyan, F., & Banerjee, A. (2020). Computation offloading for distributed mobile edge computing network: a multiobjective approach. IEEE Access, 8, 149915–149930.CrossRef
5.
Zurück zum Zitat Hazra, A., Adhikari, M., Amgoth, T., & Srirama, S. N. (2020). Joint computation offloading and scheduling optimization of iot applications in fog networks. IEEE Transactions on Network Science and Engineering, 7, 3266–3278.MathSciNetCrossRef Hazra, A., Adhikari, M., Amgoth, T., & Srirama, S. N. (2020). Joint computation offloading and scheduling optimization of iot applications in fog networks. IEEE Transactions on Network Science and Engineering, 7, 3266–3278.MathSciNetCrossRef
6.
Zurück zum Zitat Guo, M., Guan, Q., & Ke, W. (2018). Optimal scheduling of VMs in queueing cloud computing systems with a heterogeneous workload. IEEE Access, 6, 15178–15191.CrossRef Guo, M., Guan, Q., & Ke, W. (2018). Optimal scheduling of VMs in queueing cloud computing systems with a heterogeneous workload. IEEE Access, 6, 15178–15191.CrossRef
7.
Zurück zum Zitat Abedin, S. F., Alam, M. G. R., Kazmi, S. M. A., Tran, N. H., Niyato, D., & Hong, C. S. (2019). Resource allocation for ultra-reliable and enhanced mobile broadband iot applications in fog network. IEEE Transactions on Communications, 67, 489–502.CrossRef Abedin, S. F., Alam, M. G. R., Kazmi, S. M. A., Tran, N. H., Niyato, D., & Hong, C. S. (2019). Resource allocation for ultra-reliable and enhanced mobile broadband iot applications in fog network. IEEE Transactions on Communications, 67, 489–502.CrossRef
8.
Zurück zum Zitat Lie, L., Guan, Q., Jin, L., & Guo, M. (2019). Resource Allocation and Task Offloading for Heterogeneous Real-Time Tasks With Uncertain Duration Time in a Fog Queueing System. IEEE Access, 7, 9912–9925.CrossRef Lie, L., Guan, Q., Jin, L., & Guo, M. (2019). Resource Allocation and Task Offloading for Heterogeneous Real-Time Tasks With Uncertain Duration Time in a Fog Queueing System. IEEE Access, 7, 9912–9925.CrossRef
9.
Zurück zum Zitat Fan, Q., & Ansari, N. (2018). Workload Allocation in Hierarchical Cloudlet Networks. IEEE Communications Letters, 22(4), 820–823.CrossRef Fan, Q., & Ansari, N. (2018). Workload Allocation in Hierarchical Cloudlet Networks. IEEE Communications Letters, 22(4), 820–823.CrossRef
11.
Zurück zum Zitat Yi, C., Cai, J., & Su, Z. (2020). A Multi-User Mobile Computation Offloading and Transmission Scheduling Mechanism for Delay-Sensitive Applications. IEEE Trans. on Mob. Compu., 19(1), 29–43.CrossRef Yi, C., Cai, J., & Su, Z. (2020). A Multi-User Mobile Computation Offloading and Transmission Scheduling Mechanism for Delay-Sensitive Applications. IEEE Trans. on Mob. Compu., 19(1), 29–43.CrossRef
12.
Zurück zum Zitat Ommeren, J.-K.V., Baer, N., Mishra, N., & Roy, B. (2020). Batch service systems with heterogeneous servers. Queueing Systems, 95, 251–269.MathSciNetCrossRef Ommeren, J.-K.V., Baer, N., Mishra, N., & Roy, B. (2020). Batch service systems with heterogeneous servers. Queueing Systems, 95, 251–269.MathSciNetCrossRef
13.
Zurück zum Zitat Misra, C., & Swain, P. K. (2010). performance analysis of finite buffer queueing system with multiple heterogeneous servers. In T. Janowski & H. Mohanty (Eds.), Distributed Computing and Internet Technology. ICDCIT (2010). Lecture Notes in Computer Science (Vol. 5966, pp. 180–183). Berlin, Heidelberg: Springer.CrossRef Misra, C., & Swain, P. K. (2010). performance analysis of finite buffer queueing system with multiple heterogeneous servers. In T. Janowski & H. Mohanty (Eds.), Distributed Computing and Internet Technology. ICDCIT (2010). Lecture Notes in Computer Science (Vol. 5966, pp. 180–183). Berlin, Heidelberg: Springer.CrossRef
14.
Zurück zum Zitat Kafhali, S. E., & Salah, K. (2019). Performance Modeling and Analysis of IoT-enabled Healthcare Monitoring Systems. IET Networks, 8(1), 48–58.CrossRef Kafhali, S. E., & Salah, K. (2019). Performance Modeling and Analysis of IoT-enabled Healthcare Monitoring Systems. IET Networks, 8(1), 48–58.CrossRef
15.
Zurück zum Zitat Bertsimas, D., Paschalidis, ICh., & Tsitsiklis, J. N. (1994). Optimization of multiclass queueing networks: Polyhedral and nonlinear characterizations of achievable performance. The Annals of Applied Probability, 4, 43–75.MathSciNetCrossRef Bertsimas, D., Paschalidis, ICh., & Tsitsiklis, J. N. (1994). Optimization of multiclass queueing networks: Polyhedral and nonlinear characterizations of achievable performance. The Annals of Applied Probability, 4, 43–75.MathSciNetCrossRef
16.
Zurück zum Zitat Ross, S. M. (2019). Chapter 8 - Queueing Theory, Introduction to Probability Models (Twelfth, pp. 507–589). Cambridge: Academic Press.CrossRef Ross, S. M. (2019). Chapter 8 - Queueing Theory, Introduction to Probability Models (Twelfth, pp. 507–589). Cambridge: Academic Press.CrossRef
17.
Zurück zum Zitat Filipowicz, B., & Kwiecien, J. (2008). Queueing systems and networks. Models and applications. Bulletin of the Polish Academy of Sciences: Technical Sciences, 56(4), 379–390. Filipowicz, B., & Kwiecien, J. (2008). Queueing systems and networks. Models and applications. Bulletin of the Polish Academy of Sciences: Technical Sciences, 56(4), 379–390.
18.
Zurück zum Zitat Liang, H., Xing, T., Cai, L., Huang, D., Peng, D., & Liu, Y. (2013). Adaptive computing resource allocation for mobile cloud computing. International Journal of Distributed Sensor Networks, 9(4), 1–14.CrossRef Liang, H., Xing, T., Cai, L., Huang, D., Peng, D., & Liu, Y. (2013). Adaptive computing resource allocation for mobile cloud computing. International Journal of Distributed Sensor Networks, 9(4), 1–14.CrossRef
19.
Zurück zum Zitat Tawalbeh, L., Jararweh, Y., Ababneh, F., & Dosari, F. (2015). Large scale cloudlets deployment for efficient mobile cloud computing. Journal of Networks, 10(1), 70–76.CrossRef Tawalbeh, L., Jararweh, Y., Ababneh, F., & Dosari, F. (2015). Large scale cloudlets deployment for efficient mobile cloud computing. Journal of Networks, 10(1), 70–76.CrossRef
20.
Zurück zum Zitat Mao, Y., Zhang, J., & Letaief, K. B. (2016). Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas in Communications, 34(12), 3590–3605.CrossRef Mao, Y., Zhang, J., & Letaief, K. B. (2016). Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas in Communications, 34(12), 3590–3605.CrossRef
21.
Zurück zum Zitat Samanta, A., Chang, Z, & Han, Z. (2018). Latency-Oblivious Distributed Task Scheduling for Mobile Edge Computing, IEEE Global Comm. Conf. (GLOBECOM), 1-7, Abu Dhabi, United Arab Emirates. Samanta, A., Chang, Z, & Han, Z. (2018). Latency-Oblivious Distributed Task Scheduling for Mobile Edge Computing, IEEE Global Comm. Conf. (GLOBECOM), 1-7, Abu Dhabi, United Arab Emirates.
22.
Zurück zum Zitat Samanta, A., & Tang, J. (2020). Dyme: dynamic microservice scheduling in edge computing enabled IoT. IEEE Internet of Things Journal, 7(7), 6164–6174.CrossRef Samanta, A., & Tang, J. (2020). Dyme: dynamic microservice scheduling in edge computing enabled IoT. IEEE Internet of Things Journal, 7(7), 6164–6174.CrossRef
23.
Zurück zum Zitat Mukherjee, A., De, D., & Roy, D. G. (2019). Power and latency aware cloudlet selection strategy for multi-cloudlet environment. IEEE Transactions on Cloud Computing, 7(1), 141–154.CrossRef Mukherjee, A., De, D., & Roy, D. G. (2019). Power and latency aware cloudlet selection strategy for multi-cloudlet environment. IEEE Transactions on Cloud Computing, 7(1), 141–154.CrossRef
24.
Zurück zum Zitat Gill, S. S., Garraghan, P., & Buyya, R. (2019). ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices. The Journal of Systems and Software, 154, 125–138.CrossRef Gill, S. S., Garraghan, P., & Buyya, R. (2019). ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices. The Journal of Systems and Software, 154, 125–138.CrossRef
25.
Zurück zum Zitat Merluzzi, M., Lorenzo, P. D., & Barbarossa, S. (2021). Wireless edge machine learning: Resource allocation and trade-offs. IEEE Access, 9, 45377–45398.CrossRef Merluzzi, M., Lorenzo, P. D., & Barbarossa, S. (2021). Wireless edge machine learning: Resource allocation and trade-offs. IEEE Access, 9, 45377–45398.CrossRef
26.
Zurück zum Zitat Abedin, S. F., Bairagi, A. K., Munir, M. S., Tran, N. H., & Hong, C. S. (2019). Fog load balancing for massive machine type communications: A game and transport theoretic approach. IEEE Access, 7, 4204–4218.CrossRef Abedin, S. F., Bairagi, A. K., Munir, M. S., Tran, N. H., & Hong, C. S. (2019). Fog load balancing for massive machine type communications: A game and transport theoretic approach. IEEE Access, 7, 4204–4218.CrossRef
27.
Zurück zum Zitat Sthapit, S., Thompson, J., Robertson, N. M., & Hopgood, J. R. (2019). Computational load balancing on the edge in absence of cloud and fog. IEEE Transactions on Mobile Computing, 18, 1499–1512.CrossRef Sthapit, S., Thompson, J., Robertson, N. M., & Hopgood, J. R. (2019). Computational load balancing on the edge in absence of cloud and fog. IEEE Transactions on Mobile Computing, 18, 1499–1512.CrossRef
28.
Zurück zum Zitat Moody, G. B., & Mark, R. G. (1996). A database to support development and evaluation of intelligent intensive care monitoring. Computers in Cardiology, 23, 657–660. Moody, G. B., & Mark, R. G. (1996). A database to support development and evaluation of intelligent intensive care monitoring. Computers in Cardiology, 23, 657–660.
29.
Zurück zum Zitat Bhogal, Amar S., & Mani, Ali R. (2017). Pattern analysis of oxygen saturation variability in healthy individuals: entropy of pulse oximetry signals carries information about mean oxygen saturation. Frontiers in Physiology, 8, 555.CrossRef Bhogal, Amar S., & Mani, Ali R. (2017). Pattern analysis of oxygen saturation variability in healthy individuals: entropy of pulse oximetry signals carries information about mean oxygen saturation. Frontiers in Physiology, 8, 555.CrossRef
30.
Zurück zum Zitat Silva, M., Freitas, D., Neto, E., Lins, C., Teichrieb, V., & Teixeira, J. M. (2014). Glassist: Using Augmented Reality on Google Glass as an Aid to Classroom Management. In XVI Sym. on Virtual and Augmented Reality, (pp. 37-44) Silva, M., Freitas, D., Neto, E., Lins, C., Teichrieb, V., & Teixeira, J. M. (2014). Glassist: Using Augmented Reality on Google Glass as an Aid to Classroom Management. In XVI Sym. on Virtual and Augmented Reality, (pp. 37-44)
31.
Zurück zum Zitat Sonmez, C., Ozgovde, A., & Ersoy, C. (2019). Fuzzy Workload Orchestration for Edge Computing. IEEE Transactions on Network and Service Management, 16, 769–782.CrossRef Sonmez, C., Ozgovde, A., & Ersoy, C. (2019). Fuzzy Workload Orchestration for Edge Computing. IEEE Transactions on Network and Service Management, 16, 769–782.CrossRef
32.
Zurück zum Zitat Halabian, H., Lambadaris, I., & Viniotis, Y. (2019). Optimal server assignment in multi-server queueing systems with random connectivities. Journal of Communications and Networks, 21, 405–415.CrossRef Halabian, H., Lambadaris, I., & Viniotis, Y. (2019). Optimal server assignment in multi-server queueing systems with random connectivities. Journal of Communications and Networks, 21, 405–415.CrossRef
33.
Zurück zum Zitat Inaty, E., & Raad, R. (2008). CDMA-based dynamic power and bandwidth allocation (DPBA) scheme for multiclass EPON: A weighted fair queuing approach. IEEE/OSA Journal of Optical Communications and Networking, 10, 52–64.CrossRef Inaty, E., & Raad, R. (2008). CDMA-based dynamic power and bandwidth allocation (DPBA) scheme for multiclass EPON: A weighted fair queuing approach. IEEE/OSA Journal of Optical Communications and Networking, 10, 52–64.CrossRef
34.
Zurück zum Zitat Sonmez, C., Ozgovde, A., & Ersoy, C. (2017). EdgeCloudSim: An environment for performance evaluation of Edge Computing systems. In 2017 II Int. Conf. on Fog and Mobile Edge Computing (FMEC), (pp. 39-44), Valencia. Sonmez, C., Ozgovde, A., & Ersoy, C. (2017). EdgeCloudSim: An environment for performance evaluation of Edge Computing systems. In 2017 II Int. Conf. on Fog and Mobile Edge Computing (FMEC), (pp. 39-44), Valencia.
35.
Zurück zum Zitat Sonmez, C., Ozgovde, A., & Ersoy, C. (2018). EdgeCloudSim: An environment for performance evaluation of Edge Computing systems. Transactions on Emerging Telecommunications Technologies, 29(11), 1–17.CrossRef Sonmez, C., Ozgovde, A., & Ersoy, C. (2018). EdgeCloudSim: An environment for performance evaluation of Edge Computing systems. Transactions on Emerging Telecommunications Technologies, 29(11), 1–17.CrossRef
Metadaten
Titel
Delay-aware application offloading in fog environment using multi-class Brownian model
verfasst von
Naveen Chauhan
Haider Banka
Rajeev Agrawal
Publikationsdatum
07.08.2021
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 7/2021
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-021-02724-w

Weitere Artikel der Ausgabe 7/2021

Wireless Networks 7/2021 Zur Ausgabe