Skip to main content
Erschienen in: Wireless Networks 7/2023

22.03.2023

Adversarial defense method based on ensemble learning for modulation signal intelligent recognition

verfasst von: Chao Han, Ruoxi Qin, Linyuan Wang, Weijia Cui, Jian Chen, Bin Yan

Erschienen in: Wireless Networks | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modulation signal intelligent recognition model based on deep learning is widely used in the field of radio signal intelligent processing, but the adversarial attack has become a huge security threat. In order to promote the safe and reliable application of the modulation recognition intelligent model, it is necessary to study its adversarial defense technology. An adversarial defense method based on ensemble learning for modulation signal intelligent recognition model is proposed in this paper. Specifically, this method is achieved by combining multiple defense models such as adversarial training, defensive distillation, and noise smoothing. Variety of attack algorithms in both the white-box and black-box scenarios under different intensities of perturbation and different signal-to-noise ratios are carried out to verify the robustness performance of the proposed method. Strikingly, the accuracy of the model is improved to over 80% when the SNR is above 0 dB under Carlini and Wagner attack.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hou, C., Liu, G., Tian, Q., Zhou, Z., Hua, L., & Lin, Y. (2022). Multi-signal modulation classification using sliding window detection and complex convolutional network in frequency domain. IEEE Internet of Things Journal, 9(19), 19438–19449.CrossRef Hou, C., Liu, G., Tian, Q., Zhou, Z., Hua, L., & Lin, Y. (2022). Multi-signal modulation classification using sliding window detection and complex convolutional network in frequency domain. IEEE Internet of Things Journal, 9(19), 19438–19449.CrossRef
2.
Zurück zum Zitat Liu, S., Gao, P., Li, Y., et al. (2023). Multi-modal fusion network with complementarity and importance for emotion recognition. Information Sciences, 619, 679–694.CrossRef Liu, S., Gao, P., Li, Y., et al. (2023). Multi-modal fusion network with complementarity and importance for emotion recognition. Information Sciences, 619, 679–694.CrossRef
3.
Zurück zum Zitat Fu, X., Peng, Y., Liu, Y., Lin, Y., Gui, G., Gacanin, H., & Adachi, F. (2023). Semi-supervised specific emitter identification method using metric-adversarial training. IEEE Internet of Things Journal. Fu, X., Peng, Y., Liu, Y., Lin, Y., Gui, G., Gacanin, H., & Adachi, F. (2023). Semi-supervised specific emitter identification method using metric-adversarial training. IEEE Internet of Things Journal.
4.
Zurück zum Zitat Franco, H., Cobo-Kroenke, C., Welch, S., & Graciarena, M. (2020). Wideband spectral monitoring using deep learning. In Proceedings of the 2nd ACM workshop on wireless security and machine learning (pp. 19–24). Franco, H., Cobo-Kroenke, C., Welch, S., & Graciarena, M. (2020). Wideband spectral monitoring using deep learning. In Proceedings of the 2nd ACM workshop on wireless security and machine learning (pp. 19–24).
5.
Zurück zum Zitat Omotere, O., Fuller, J., Qian, L., & Han, Z. (2018). Spectrum occupancy prediction in coexisting wireless systems using deep learning. In: IEEE 88th vehicular technology conference (pp. 1–7). Omotere, O., Fuller, J., Qian, L., & Han, Z. (2018). Spectrum occupancy prediction in coexisting wireless systems using deep learning. In: IEEE 88th vehicular technology conference (pp. 1–7).
7.
Zurück zum Zitat Xu, Z., Han, G., Liu, L., et al. (2022). A lightweight specific emitter identification model for IIoT devices based on adaptive broad learning. IEEE Transactions on Industrial Informatics. Xu, Z., Han, G., Liu, L., et al. (2022). A lightweight specific emitter identification model for IIoT devices based on adaptive broad learning. IEEE Transactions on Industrial Informatics.
8.
Zurück zum Zitat Wang, Y., Gui, G., Lin, Y., et al. (2022). Few-shot specific emitter identification via deep metric ensemble learning. IEEE Internet of Things Journal, 9(24), 24980–24994.CrossRef Wang, Y., Gui, G., Lin, Y., et al. (2022). Few-shot specific emitter identification via deep metric ensemble learning. IEEE Internet of Things Journal, 9(24), 24980–24994.CrossRef
9.
Zurück zum Zitat Fu, X., Gui, G., Wang, Y., et al. (2022). Automatic modulation classification based on decentralized learning and ensemble learning. IEEE Transactions on Vehicular Technology, 71(7), 7942–7946.CrossRef Fu, X., Gui, G., Wang, Y., et al. (2022). Automatic modulation classification based on decentralized learning and ensemble learning. IEEE Transactions on Vehicular Technology, 71(7), 7942–7946.CrossRef
10.
Zurück zum Zitat Zhang, X., Zhao, H., Zhu, H., et al. (2022). NAS-AMR: Neural architecture search-based automatic modulation recognition for integrated sensing and communication systems. IEEE Transactions on Cognitive Communications and Networking, 8(3), 1374–1386.CrossRef Zhang, X., Zhao, H., Zhu, H., et al. (2022). NAS-AMR: Neural architecture search-based automatic modulation recognition for integrated sensing and communication systems. IEEE Transactions on Cognitive Communications and Networking, 8(3), 1374–1386.CrossRef
11.
Zurück zum Zitat O'shea, T. J., & West, N. (2016). Radio machine learning dataset generation with GNU radio. In Proceedings of the GNU radio conference (Vol. 1, No. 1). O'shea, T. J., & West, N. (2016). Radio machine learning dataset generation with GNU radio. In Proceedings of the GNU radio conference (Vol. 1, No. 1).
12.
Zurück zum Zitat Bao, Z., Lin, Y., Zhang, S., et al. (2021). Threat of adversarial attacks on DL-based IoT device identification. IEEE Internet of Things Journal, 9(11), 9012–9024.CrossRef Bao, Z., Lin, Y., Zhang, S., et al. (2021). Threat of adversarial attacks on DL-based IoT device identification. IEEE Internet of Things Journal, 9(11), 9012–9024.CrossRef
13.
Zurück zum Zitat Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:​1312.​6199.
14.
Zurück zum Zitat Sadeghi, M., & Larsson, E. G. (2018). Adversarial attacks on deep-learning based radio signal classification. IEEE Wireless Communications Letters, 8(1), 213–216.CrossRef Sadeghi, M., & Larsson, E. G. (2018). Adversarial attacks on deep-learning based radio signal classification. IEEE Wireless Communications Letters, 8(1), 213–216.CrossRef
15.
Zurück zum Zitat Lin, Y., Zhao, H., Tu, Y., Mao, S., & Dou, Z. (2020). Threats of adversarial attacks in DNN-based modulation recognition. In IEEE conference on computer communications (pp. 2469–2478). Lin, Y., Zhao, H., Tu, Y., Mao, S., & Dou, Z. (2020). Threats of adversarial attacks in DNN-based modulation recognition. In IEEE conference on computer communications (pp. 2469–2478).
16.
Zurück zum Zitat Qi, P., Jiang, T., Wang, L., et al. (2022). Detection tolerant black-box adversarial attack against automatic modulation classification with deep learning. IEEE Transactions on Reliability, 71.2, 674–686.CrossRef Qi, P., Jiang, T., Wang, L., et al. (2022). Detection tolerant black-box adversarial attack against automatic modulation classification with deep learning. IEEE Transactions on Reliability, 71.2, 674–686.CrossRef
17.
Zurück zum Zitat Rana, M. M., Xiang, W., Wang, E., Li, X., & Choi, B. J. (2018). Internet of Things infrastructure for wireless power transfer systems. IEEE Access, 6, 19295–19303.CrossRef Rana, M. M., Xiang, W., Wang, E., Li, X., & Choi, B. J. (2018). Internet of Things infrastructure for wireless power transfer systems. IEEE Access, 6, 19295–19303.CrossRef
18.
Zurück zum Zitat Tian, Q., Zhang, S., Mao, S., et al. (2022). Adversarial attacks and defenses for digital communication signals identification. Digital Communications and Networks. Tian, Q., Zhang, S., Mao, S., et al. (2022). Adversarial attacks and defenses for digital communication signals identification. Digital Communications and Networks.
19.
Zurück zum Zitat Kim, B., Sagduyu, Y. E., Davaslioglu, K., et al. (2021). Channel-aware adversarial attacks against deep learning-based wireless signal classifiers. IEEE Transactions on Wireless Communications, 21(6), 3868–3880.CrossRef Kim, B., Sagduyu, Y. E., Davaslioglu, K., et al. (2021). Channel-aware adversarial attacks against deep learning-based wireless signal classifiers. IEEE Transactions on Wireless Communications, 21(6), 3868–3880.CrossRef
20.
Zurück zum Zitat Kokalj-Filipovic, S., Miller, R., & Vanhoy, G. (2019). Adversarial examples in RF deep learning: Detection and physical robustness. In IEEE global conference on signal and information processing (pp. 1–5). Kokalj-Filipovic, S., Miller, R., & Vanhoy, G. (2019). Adversarial examples in RF deep learning: Detection and physical robustness. In IEEE global conference on signal and information processing (pp. 1–5).
21.
Zurück zum Zitat Carlini, N., & Wagner, D. (2017). Towards evaluating the robustness of neural networks. In IEEE symposium on security and privacy (pp. 39–57). Carlini, N., & Wagner, D. (2017). Towards evaluating the robustness of neural networks. In IEEE symposium on security and privacy (pp. 39–57).
22.
Zurück zum Zitat Adesina, D., Hsieh, C. C., Sagduyu, Y. E., & Qian, L. (2022). Adversarial machine learning in wireless communications using RF data: A review. IEEE Communications Surveys and Tutorials. Adesina, D., Hsieh, C. C., Sagduyu, Y. E., & Qian, L. (2022). Adversarial machine learning in wireless communications using RF data: A review. IEEE Communications Surveys and Tutorials.
23.
Zurück zum Zitat Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. In International conference on learning representations. Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. In International conference on learning representations.
24.
Zurück zum Zitat Kurakin, A., Goodfellow, I. J., & Bengio, S. (2018). Adversarial examples in the physical world. In Artificial intelligence safety and security (pp. 99–112). Kurakin, A., Goodfellow, I. J., & Bengio, S. (2018). Adversarial examples in the physical world. In Artificial intelligence safety and security (pp. 99–112).
25.
Zurück zum Zitat Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2017). Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2017). Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:​1706.​06083.
26.
Zurück zum Zitat Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., & Li, J. (2018). Boosting adversarial attacks with momentum. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 9185–9193). Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., & Li, J. (2018). Boosting adversarial attacks with momentum. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 9185–9193).
27.
28.
Zurück zum Zitat Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., & Jana, S. (2019). Certified robustness to adversarial examples with differential privacy. In IEEE symposium on security and privacy (pp. 656–672). Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., & Jana, S. (2019). Certified robustness to adversarial examples with differential privacy. In IEEE symposium on security and privacy (pp. 656–672).
29.
Zurück zum Zitat Yang, G., Duan, T., Hu, J. E., Salman, H., Razenshteyn, I., & Li, J. (2020). Randomized smoothing of all shapes and sizes. In International conference on machine learning (pp. 10693–10705). Yang, G., Duan, T., Hu, J. E., Salman, H., Razenshteyn, I., & Li, J. (2020). Randomized smoothing of all shapes and sizes. In International conference on machine learning (pp. 10693–10705).
30.
Zurück zum Zitat He, W., Wei, J., Chen, X., Carlini, N., & Song, D. (2017). Adversarial example defense: Ensembles of weak defenses are not strong. In 11th USENIX workshop on offensive technologies. He, W., Wei, J., Chen, X., Carlini, N., & Song, D. (2017). Adversarial example defense: Ensembles of weak defenses are not strong. In 11th USENIX workshop on offensive technologies.
31.
Zurück zum Zitat Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine learning, 51(2), 181–207.CrossRefMATH Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine learning, 51(2), 181–207.CrossRefMATH
32.
Zurück zum Zitat Kurakin, A., Goodfellow, I., Bengio, S., Dong, Y., Liao, F., Liang, M., et al. (2018). Adversarial attacks and defences competition. In The NIPS'17 competition: Building intelligent systems (pp. 195–231). Kurakin, A., Goodfellow, I., Bengio, S., Dong, Y., Liao, F., Liang, M., et al. (2018). Adversarial attacks and defences competition. In The NIPS'17 competition: Building intelligent systems (pp. 195–231).
33.
Zurück zum Zitat Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., & McDaniel, P. (2017). Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., & McDaniel, P. (2017). Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:​1705.​07204.
35.
Zurück zum Zitat Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., & Gu, Q. (2019). Improving adversarial robustness requires revisiting misclassified examples. In International conference on learning representations. Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., & Gu, Q. (2019). Improving adversarial robustness requires revisiting misclassified examples. In International conference on learning representations.
36.
Zurück zum Zitat Papernot, N., McDaniel, P., Wu, X., Jha, S., & Swami, A. (2016). Distillation as a defense to adversarial perturbations against deep neural networks. In IEEE symposium on security and privacy (pp. 582–597). Papernot, N., McDaniel, P., Wu, X., Jha, S., & Swami, A. (2016). Distillation as a defense to adversarial perturbations against deep neural networks. In IEEE symposium on security and privacy (pp. 582–597).
37.
Zurück zum Zitat Gao, Q., Cao, Z., & Li, D. (2021). Defensive distillation based end-to-end auto-encoder communication system. In 7th international conference on computer and communications (pp. 109–114). Gao, Q., Cao, Z., & Li, D. (2021). Defensive distillation based end-to-end auto-encoder communication system. In 7th international conference on computer and communications (pp. 109–114).
38.
Zurück zum Zitat Catak, F. O., Kuzlu, M., Catak, E., Cali, U., & Guler, O. (2022). Defensive distillation-based adversarial attack mitigation method for channel estimation using deep learning models in next-generation wireless networks. IEEE Access, 10, 98191–98203.CrossRef Catak, F. O., Kuzlu, M., Catak, E., Cali, U., & Guler, O. (2022). Defensive distillation-based adversarial attack mitigation method for channel estimation using deep learning models in next-generation wireless networks. IEEE Access, 10, 98191–98203.CrossRef
39.
Zurück zum Zitat Cohen, J., Rosenfeld, E., & Kolter, Z. (2019). Certified adversarial robustness via randomized smoothing. In International conference on machine learning (pp. 1310–1320). Cohen, J., Rosenfeld, E., & Kolter, Z. (2019). Certified adversarial robustness via randomized smoothing. In International conference on machine learning (pp. 1310–1320).
40.
Zurück zum Zitat Levine, A., & Feizi, S. (2020). (De)Randomized smoothing for certifiable defense against patch attacks. Neural Information Processing Systems, 33, 6465–6475. Levine, A., & Feizi, S. (2020). (De)Randomized smoothing for certifiable defense against patch attacks. Neural Information Processing Systems, 33, 6465–6475.
41.
Zurück zum Zitat Jia, J., Cao, X., Wang, B., & Gong, N. Z. (2019). Certified robustness for top-k predictions against adversarial perturbations via randomized smoothing. In International conference on learning representations. Jia, J., Cao, X., Wang, B., & Gong, N. Z. (2019). Certified robustness for top-k predictions against adversarial perturbations via randomized smoothing. In International conference on learning representations.
42.
Zurück zum Zitat Zhang, D., Ye, M., Gong, C., Zhu, Z., & Liu, Q. (2020). Black-box certification with randomized smoothing: A Functional Optimization based Framework. Neural Information Processing Systems, 33, 2316–2326. Zhang, D., Ye, M., Gong, C., Zhu, Z., & Liu, Q. (2020). Black-box certification with randomized smoothing: A Functional Optimization based Framework. Neural Information Processing Systems, 33, 2316–2326.
43.
Zurück zum Zitat Maroto, J., Bovet, G., & Frossard, P. (2022). SafeAMC: Adversarial training for robust modulation classification recognition models. In 30th European signal processing conference (pp. 1636–1640). Maroto, J., Bovet, G., & Frossard, P. (2022). SafeAMC: Adversarial training for robust modulation classification recognition models. In 30th European signal processing conference (pp. 1636–1640).
Metadaten
Titel
Adversarial defense method based on ensemble learning for modulation signal intelligent recognition
verfasst von
Chao Han
Ruoxi Qin
Linyuan Wang
Weijia Cui
Jian Chen
Bin Yan
Publikationsdatum
22.03.2023
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 7/2023
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-023-03299-4

Weitere Artikel der Ausgabe 7/2023

Wireless Networks 7/2023 Zur Ausgabe