Skip to main content
Erschienen in: Wireless Personal Communications 3/2020

23.11.2019

Wearable Wireless Sensors Network for ECG Telemonitoring Using Neural Network for Features Extraction

verfasst von: Amina El Attaoui, Marouane Hazmi, Abdelilah Jilbab, Abdennasser Bourouhou

Erschienen in: Wireless Personal Communications | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The technological progress of wireless communication, embedded systems and health offers innovative alternatives to medical care, in particular, telemonitoring and telediagnosis. ECG signal monitoring is a vital indicator in the control of heart disease. Nevertheless, one of the main challenges of remote monitoring of heart rate is the requirement of control in accordance with the service provided by hospital equipment. In this article, an approach to ECG telemonitoring based on wireless sensor networks combined with the Internet of Things (IoT) is proposed. The ECG signal is measured using a wearable sensor node allowing high-frequency noise suppression. The collected data is transmitted to the Gateway node, which performs complex processing including baseline and linear variations suppression using polynomial interpolation, extraction of R peaks using the Multilayer Perceptron Neural Network. It can determine the variation in heart rate by the using the extracted R signal. Thanks to IoT technology, the Gateway node is able to aggregate data into an IoT platform  through an IoT cloud for visual telemonitoring of heart rate in real-time. The experimental results show that the system is effective and reliable for the collection, transmission, and display of ECG data in real time for the purpose of telemonitoring of patients with heart disease.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Venkatesan, C., Karthigaikumar, P., & Satheeskumaran, S. (2018). Mobile cloud computing for ECG telemonitoring and real-time coronary heart disease risk detection. Biomedical Signal Processing and Control, 44, 138–145.CrossRef Venkatesan, C., Karthigaikumar, P., & Satheeskumaran, S. (2018). Mobile cloud computing for ECG telemonitoring and real-time coronary heart disease risk detection. Biomedical Signal Processing and Control, 44, 138–145.CrossRef
2.
Zurück zum Zitat Abidi, B., Jilbab, A., & El Haziti, M. (2017). A new generation of wireless sensors networks: Wireless body area networks. In Á. Rocha, A. M. Correia, H. Adeli, L. P. Reis, & S. Costanzo (Eds.), Recent advances in information systems and technologies (Vol. 570, pp. 384–393). Cham: Springer International Publishing.CrossRef Abidi, B., Jilbab, A., & El Haziti, M. (2017). A new generation of wireless sensors networks: Wireless body area networks. In Á. Rocha, A. M. Correia, H. Adeli, L. P. Reis, & S. Costanzo (Eds.), Recent advances in information systems and technologies (Vol. 570, pp. 384–393). Cham: Springer International Publishing.CrossRef
3.
Zurück zum Zitat Rapin, M., et al. (2019). Wearable sensors for frequency-multiplexed EIT and multilead ECG data acquisition. IEEE Transactions on Biomedical Engineering, 66(3), 810–820.CrossRef Rapin, M., et al. (2019). Wearable sensors for frequency-multiplexed EIT and multilead ECG data acquisition. IEEE Transactions on Biomedical Engineering, 66(3), 810–820.CrossRef
4.
Zurück zum Zitat Chou, C.-Y., Chang, E.-J., Li, H.-T., & Wu, A.-Y. (2018). Low-complexity privacy-preserving compressive analysis using subspace-based dictionary for ECG telemonitoring system. IEEE Transactions on Biomedical Circuits and Systems, 12(4), 801–811.CrossRef Chou, C.-Y., Chang, E.-J., Li, H.-T., & Wu, A.-Y. (2018). Low-complexity privacy-preserving compressive analysis using subspace-based dictionary for ECG telemonitoring system. IEEE Transactions on Biomedical Circuits and Systems, 12(4), 801–811.CrossRef
5.
Zurück zum Zitat Ouelli, A., Elhadadi, B., & Bouikhalene, B. (2014). Multivariate autoregressive modeling for cardiac arrhythmia classification using multilayer perceptron neural networks. In 2014 international conference on multimedia computing and systems (ICMCS), Marrakech, Morocco (pp. 402–406). Ouelli, A., Elhadadi, B., & Bouikhalene, B. (2014). Multivariate autoregressive modeling for cardiac arrhythmia classification using multilayer perceptron neural networks. In 2014 international conference on multimedia computing and systems (ICMCS), Marrakech, Morocco (pp. 402–406).
6.
Zurück zum Zitat Baba, E., Jilbab, A., & Hammouch, A. (2018). A health remote monitoring application based on wireless body area networks. In 2018 international conference on intelligent systems and computer vision (ISCV), Fez (pp. 1–4). Baba, E., Jilbab, A., & Hammouch, A. (2018). A health remote monitoring application based on wireless body area networks. In 2018 international conference on intelligent systems and computer vision (ISCV), Fez (pp. 1–4).
7.
Zurück zum Zitat Winkler, S., et al. (2011). Diagnostic accuracy of a new detection algorithm for atrial fibrillation in cardiac telemonitoring with portable electrocardiogram devices. Journal of Electrocardiology, 44(4), 460–464.CrossRef Winkler, S., et al. (2011). Diagnostic accuracy of a new detection algorithm for atrial fibrillation in cardiac telemonitoring with portable electrocardiogram devices. Journal of Electrocardiology, 44(4), 460–464.CrossRef
8.
Zurück zum Zitat Chan, A. M., Selvaraj, N., Ferdosi, N., & Narasimhan, R. (2013). Wireless patch sensor for remote monitoring of heart rate, respiration, activity, and falls. In 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Osaka (pp. 6115–6118). Chan, A. M., Selvaraj, N., Ferdosi, N., & Narasimhan, R. (2013). Wireless patch sensor for remote monitoring of heart rate, respiration, activity, and falls. In 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Osaka (pp. 6115–6118).
9.
Zurück zum Zitat Bakul, G., Singh, D., & Kim, D. (2011). Optimized WSN for ECG monitoring in ubiquitous healthcare system, p. 4. Bakul, G., Singh, D., & Kim, D. (2011). Optimized WSN for ECG monitoring in ubiquitous healthcare system, p. 4.
10.
Zurück zum Zitat Spano, E., Di Pascoli, S., & Iannaccone, G. (2016). Low-power wearable ECG monitoring system for multiple-patient remote monitoring. IEEE Sensors Journal, 16(13), 5452–5462.CrossRef Spano, E., Di Pascoli, S., & Iannaccone, G. (2016). Low-power wearable ECG monitoring system for multiple-patient remote monitoring. IEEE Sensors Journal, 16(13), 5452–5462.CrossRef
11.
Zurück zum Zitat Lalos, A. S., Alonso, L., & Verikoukis, C. (2014). Model based compressed sensing reconstruction algorithms for ECG telemonitoring in WBANs. Digital Signal Processing, 35, 105–116.CrossRef Lalos, A. S., Alonso, L., & Verikoukis, C. (2014). Model based compressed sensing reconstruction algorithms for ECG telemonitoring in WBANs. Digital Signal Processing, 35, 105–116.CrossRef
13.
Zurück zum Zitat Poungponsri, S., & Yu, X.-H. (2013). An adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks. Neurocomputing, 117, 206–213.CrossRef Poungponsri, S., & Yu, X.-H. (2013). An adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks. Neurocomputing, 117, 206–213.CrossRef
14.
Zurück zum Zitat N. SEMICONDUCTOR. (2007). nRF24L01 single chip 2.4 GHz transceiver product specification. N. SEMICONDUCTOR. (2007). nRF24L01 single chip 2.4 GHz transceiver product specification.
15.
Zurück zum Zitat González, F., Villegas, O., Ramírez, D., Sánchez, V., & Domínguez, H. (2014). Smart multi-level tool for remote patient monitoring based on a wireless sensor network and mobile augmented reality. Sensors, 14(9), 17212–17234.CrossRef González, F., Villegas, O., Ramírez, D., Sánchez, V., & Domínguez, H. (2014). Smart multi-level tool for remote patient monitoring based on a wireless sensor network and mobile augmented reality. Sensors, 14(9), 17212–17234.CrossRef
16.
Zurück zum Zitat Goldberger, A. L., Goldberger, Z. D., & Shvilkin, A. (2018). Bradycardias and tachycardias in Goldberger’s clinical electrocardiography (pp. 194–210). Amsterdam: Elsevier.CrossRef Goldberger, A. L., Goldberger, Z. D., & Shvilkin, A. (2018). Bradycardias and tachycardias in Goldberger’s clinical electrocardiography (pp. 194–210). Amsterdam: Elsevier.CrossRef
17.
Zurück zum Zitat Wang, Y., Wunderlich, R., & Heinen, S. (2013). Design and evaluation of a novel wireless reconstructed 3-lead ECG monitoring system. In IEEE biomedical circuits and systems conference (BioCAS). Rotterdam, Netherlands (pp. 362–365). Wang, Y., Wunderlich, R., & Heinen, S. (2013). Design and evaluation of a novel wireless reconstructed 3-lead ECG monitoring system. In IEEE biomedical circuits and systems conference (BioCAS). Rotterdam, Netherlands (pp. 362–365).
19.
Zurück zum Zitat Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 20(3), 45–50.CrossRef Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 20(3), 45–50.CrossRef
20.
Zurück zum Zitat Pi, R. (2016). Raspberry Pi Compute Module (CM1) Raspberry Pi Compute Module 3 (CM3) Raspberry Pi Compute Module 3 Lite (CM3L). Pi, R. (2016). Raspberry Pi Compute Module (CM1) Raspberry Pi Compute Module 3 (CM3) Raspberry Pi Compute Module 3 Lite (CM3L).
21.
Zurück zum Zitat Goldberger, A. L., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101(23), E215–220.CrossRef Goldberger, A. L., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101(23), E215–220.CrossRef
22.
Zurück zum Zitat Stoica, P., & Moses, R. L. (2005). Spectral analysis of signals. Upper Saddle River, NJ: Prentice Hall. Stoica, P., & Moses, R. L. (2005). Spectral analysis of signals. Upper Saddle River, NJ: Prentice Hall.
Metadaten
Titel
Wearable Wireless Sensors Network for ECG Telemonitoring Using Neural Network for Features Extraction
verfasst von
Amina El Attaoui
Marouane Hazmi
Abdelilah Jilbab
Abdennasser Bourouhou
Publikationsdatum
23.11.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06967-x

Weitere Artikel der Ausgabe 3/2020

Wireless Personal Communications 3/2020 Zur Ausgabe