Skip to main content
Erschienen in: Wireless Personal Communications 4/2020

27.11.2019

Design of Low Power Si0.7Ge0.3 Pocket Junction-Less Tunnel FET Using Below 5 nm Technology

verfasst von: Suman Lata Tripathi, Govind Singh Patel

Erschienen in: Wireless Personal Communications | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work proposed the design of low power Si0.7Ge0.3 pocket Junction-less TFET (JLTFET) on bulk silicon using below 5 nm technology. The inclusion of junction-less regions improves ON-state current with lesser effect on OFF-state current. The p-type pocket regions added to improve device performance in subthreshold region showing reduction in OFF-state leakage current leading to good value of ON/OFF current ratio as compared to other similar TFET structures. A high-value ION/IOFF ratio and good subthreshold behavior are observed for pocket JLTFET with 2 nm gate length and body thickness 0.5 nm. The proposed JLTFET is further optimized for different gate contact and oxide materials. The temperature analysis plays major role in deciding a reliable ON-state and OFF-state performance of transistors. So, the proposed pocket JLTFETis investigated for harsh temperature conditions to characterize the performance for DC and AC parameters. The sensitivity of proposed JLTFET is analyzed under different temperature conditions in range of (200–400) K to observe subthreshold performance such as transfer characteristics, Output characteristics and ION/IOFF ratio. The proposed designs for JLTFETs have been simulated using TCAD 2D/3D device simulator.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Colinge, J. P. (2008). The new generation of SOI MOSFETs. The Romanian Journal of Information Science and Technology,11(1), 3–15. Colinge, J. P. (2008). The new generation of SOI MOSFETs. The Romanian Journal of Information Science and Technology,11(1), 3–15.
2.
Zurück zum Zitat Manoj, C. R., Nagpal, M., et al. (2008). Device design and optimization considerations for Bulk FinFETs. IEEE Transactions on Electron Devices,55(2), 609–615.CrossRef Manoj, C. R., Nagpal, M., et al. (2008). Device design and optimization considerations for Bulk FinFETs. IEEE Transactions on Electron Devices,55(2), 609–615.CrossRef
3.
Zurück zum Zitat Tripathi, S. L., Mishra, R., & Mishra, R. A. (2013). High performance Bulk FinFET with bottom spacer. In IEEE CONNECT. Tripathi, S. L., Mishra, R., & Mishra, R. A. (2013). High performance Bulk FinFET with bottom spacer. In IEEE CONNECT.
4.
Zurück zum Zitat Zhao, H., Yeo, Y.-C., et al. (2008). Analysis of the effects of fringing electric field on FinFET device performance and structural optimization using 3-D simulation. IEEE transactions on Electronics Devices,55(5), 1177–1184.CrossRef Zhao, H., Yeo, Y.-C., et al. (2008). Analysis of the effects of fringing electric field on FinFET device performance and structural optimization using 3-D simulation. IEEE transactions on Electronics Devices,55(5), 1177–1184.CrossRef
5.
Zurück zum Zitat Nirschl, T., Wang, P.-F. et al. (2004). The tunneling field effect transistor (TFET): The temperature dependence, the simulation model, and its application. IEEE. Nirschl, T., Wang, P.-F. et al. (2004). The tunneling field effect transistor (TFET): The temperature dependence, the simulation model, and its application. IEEE.
6.
Zurück zum Zitat Khatami, Y., & Banerjee, K. (2009). Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Transactions on Electron Devices,56(11), 2752–2761.CrossRef Khatami, Y., & Banerjee, K. (2009). Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Transactions on Electron Devices,56(11), 2752–2761.CrossRef
7.
Zurück zum Zitat Avci, U. E., et al. (2012). Understanding the feasibility of scaled III–V TFET for logic by bridging atomistic simulations and experimental results. In Proceedings of the symposium on VLSI technology (VLSIT) (pp. 183–184). Honolulu, HI, USA. Avci, U. E., et al. (2012). Understanding the feasibility of scaled III–V TFET for logic by bridging atomistic simulations and experimental results. In Proceedings of the symposium on VLSI technology (VLSIT) (pp. 183–184). Honolulu, HI, USA.
8.
Zurück zum Zitat Avci, U. E., Morris, D. H., & Young, I. A. (2014). Tunnel field-effect transistors: Prospects and challenges. IEEE Journal of Electron Device Society, 3(3), 88–95.CrossRef Avci, U. E., Morris, D. H., & Young, I. A. (2014). Tunnel field-effect transistors: Prospects and challenges. IEEE Journal of Electron Device Society, 3(3), 88–95.CrossRef
9.
Zurück zum Zitat Sharma, A., Goud, A. A., & Roy, K. (2015). P-channel tunneling field effect transistor (TFET): Sub-10 nm technology enablement by GaSb–InAs with doped source underlap. In Device research conference (DRC) (pp. 1548–3770). IEEE. Sharma, A., Goud, A. A., & Roy, K. (2015). P-channel tunneling field effect transistor (TFET): Sub-10 nm technology enablement by GaSb–InAs with doped source underlap. In Device research conference (DRC) (pp. 1548–3770). IEEE.
10.
Zurück zum Zitat Yang, Z. (2016). Tunnel field-effect transistor withand L-shaped gate. IEEE Electron Device Letters,37(7), 839–842.CrossRef Yang, Z. (2016). Tunnel field-effect transistor withand L-shaped gate. IEEE Electron Device Letters,37(7), 839–842.CrossRef
11.
Zurück zum Zitat Li, W., Liu, H., Wang, S., Chen, S., & Yang, Z. (2017). Design of high performance Si/SiGe heterojunction tunneling FETs with a T-shaped gate. Nanoscale Research Letters,12(1), 198.CrossRef Li, W., Liu, H., Wang, S., Chen, S., & Yang, Z. (2017). Design of high performance Si/SiGe heterojunction tunneling FETs with a T-shaped gate. Nanoscale Research Letters,12(1), 198.CrossRef
12.
Zurück zum Zitat Li, W., Liu, H., Wang, S., & Chen, S. (2017). Reduced miller capacitance in U-shaped channel tunneling FET by introducing heterogeneous gate dielectric. IEEE Electron Device Letters,38(3), 403–406.CrossRef Li, W., Liu, H., Wang, S., & Chen, S. (2017). Reduced miller capacitance in U-shaped channel tunneling FET by introducing heterogeneous gate dielectric. IEEE Electron Device Letters,38(3), 403–406.CrossRef
13.
Zurück zum Zitat Wang, W., Wang, P.-F., et al. (2014). Design of U-shape channel tunnel FETs with SiGe source regions. IEEE Transactions on Electron Devices,61(1), 193–197.CrossRef Wang, W., Wang, P.-F., et al. (2014). Design of U-shape channel tunnel FETs with SiGe source regions. IEEE Transactions on Electron Devices,61(1), 193–197.CrossRef
14.
Zurück zum Zitat Imenabadi, R. M., Saremi, M., & Vandenberghe, W. G. (2017). A novel PNPN-like Z-shaped tunnel field-effect transistor with improved ambipolar behavior and RF performance. IEEE Transactions On Electron Devices,64, 4752–4758.CrossRef Imenabadi, R. M., Saremi, M., & Vandenberghe, W. G. (2017). A novel PNPN-like Z-shaped tunnel field-effect transistor with improved ambipolar behavior and RF performance. IEEE Transactions On Electron Devices,64, 4752–4758.CrossRef
15.
Zurück zum Zitat Saurabh, S., & Kumar, M. J. (2012). Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Transactions on Electron Devices,58, 1023–1029. Saurabh, S., & Kumar, M. J. (2012). Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Transactions on Electron Devices,58, 1023–1029.
16.
Zurück zum Zitat Rahi, S. B., Asthana, P., & Gupta, S. (2017). Heterogate junctionless tunnel field-effect transistor: Future of low-power devices. Journal of Computational Electronics,16(1), 30–38.CrossRef Rahi, S. B., Asthana, P., & Gupta, S. (2017). Heterogate junctionless tunnel field-effect transistor: Future of low-power devices. Journal of Computational Electronics,16(1), 30–38.CrossRef
17.
Zurück zum Zitat Sahay, S., & Kumar, M. J. (2016). Controlling L-BTBT and volume depletion in nanowire JLFETs using core–shell architecture. IEEE Transactions on Electron Devices,63(9), 3790–3794.CrossRef Sahay, S., & Kumar, M. J. (2016). Controlling L-BTBT and volume depletion in nanowire JLFETs using core–shell architecture. IEEE Transactions on Electron Devices,63(9), 3790–3794.CrossRef
18.
Zurück zum Zitat Kumar, M. J., & Sahay, S. (2016). Controlling BTBT-induced parasitic BJTaction in junctionless FETs using a hybrid channel. IEEE Transactions on Electron Devices,63(8), 3350–3353.CrossRef Kumar, M. J., & Sahay, S. (2016). Controlling BTBT-induced parasitic BJTaction in junctionless FETs using a hybrid channel. IEEE Transactions on Electron Devices,63(8), 3350–3353.CrossRef
19.
Zurück zum Zitat Sahay, S., & Kumar, M. J. (2016). Realizing efficient volume depletion in SOI junctionless FETs. IEEE Journal of the Electron Devices Society,4(3), 110–115.CrossRef Sahay, S., & Kumar, M. J. (2016). Realizing efficient volume depletion in SOI junctionless FETs. IEEE Journal of the Electron Devices Society,4(3), 110–115.CrossRef
20.
Zurück zum Zitat Lahgere, A., & Kumar, M. J. (2017). A tunnel dielectric-based junctionless transistor with reduced parasitic BJT action. IEEE Transactions on Electron Devices,64, 3470–3475.CrossRef Lahgere, A., & Kumar, M. J. (2017). A tunnel dielectric-based junctionless transistor with reduced parasitic BJT action. IEEE Transactions on Electron Devices,64, 3470–3475.CrossRef
21.
Zurück zum Zitat Asthana, P. K., Ghosh, B., Rahi, S. B., & Goswami, Y. (2014). Optimal design of high performance H-JLTFET using HfO2 as gate dielectric for ultra low power applications. RSC Advances,4(43), 22803–22807.CrossRef Asthana, P. K., Ghosh, B., Rahi, S. B., & Goswami, Y. (2014). Optimal design of high performance H-JLTFET using HfO2 as gate dielectric for ultra low power applications. RSC Advances,4(43), 22803–22807.CrossRef
22.
Zurück zum Zitat Narang, R., Saxena, M., Gupta, R. S., & Gupta, M. (2013). Impact of temperature variations on the device and circuit performance of tunnel FET: A simulation study. IEEE Transactions on Nanotechnology,12, 951–957.CrossRef Narang, R., Saxena, M., Gupta, R. S., & Gupta, M. (2013). Impact of temperature variations on the device and circuit performance of tunnel FET: A simulation study. IEEE Transactions on Nanotechnology,12, 951–957.CrossRef
23.
Zurück zum Zitat Rao, M., Ranjan, R., Pradhan, K. P., Artola, L., & Sahu, P. K. (2016). Spacer engineered Tri-gate SOI TFET: An investigation towards harsh temperature environment applications. Superlattices and Microstructures,97, 70–77.CrossRef Rao, M., Ranjan, R., Pradhan, K. P., Artola, L., & Sahu, P. K. (2016). Spacer engineered Tri-gate SOI TFET: An investigation towards harsh temperature environment applications. Superlattices and Microstructures,97, 70–77.CrossRef
24.
Zurück zum Zitat Kumar, T. S., & Tripathi, S. L. (2019). Implementation of CMOS SRAM Cells in 7, 8, 10 and 12-transistor topologies and their performance comparison. International Journal of Engineering and Advanced Technology,8, 227–229.CrossRef Kumar, T. S., & Tripathi, S. L. (2019). Implementation of CMOS SRAM Cells in 7, 8, 10 and 12-transistor topologies and their performance comparison. International Journal of Engineering and Advanced Technology,8, 227–229.CrossRef
25.
Zurück zum Zitat Tripathi, S. L., Patel, R., & Agrawal, V. K. (2019). Low leakage pocket junction-less DGTFET with bio sensing cavity region. Turkish Journal of Electrical Engineering and Computer Sciences,27(4), 2466–2474.CrossRef Tripathi, S. L., Patel, R., & Agrawal, V. K. (2019). Low leakage pocket junction-less DGTFET with bio sensing cavity region. Turkish Journal of Electrical Engineering and Computer Sciences,27(4), 2466–2474.CrossRef
Metadaten
Titel
Design of Low Power Si0.7Ge0.3 Pocket Junction-Less Tunnel FET Using Below 5 nm Technology
verfasst von
Suman Lata Tripathi
Govind Singh Patel
Publikationsdatum
27.11.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06978-8

Weitere Artikel der Ausgabe 4/2020

Wireless Personal Communications 4/2020 Zur Ausgabe

Neuer Inhalt