Skip to main content
Erschienen in: World Wide Web 3/2020

27.12.2019

Robust SVM with adaptive graph learning

verfasst von: Rongyao Hu, Xiaofeng Zhu, Yonghua Zhu, Jiangzhang Gan

Erschienen in: World Wide Web | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Support Vector Machine (SVM) has been widely applied in real application due to its efficient performance in the classification task so that a large number of SVM methods have been proposed. In this paper, we present a novel SVM method by taking the dynamic graph learning and the self-paced learning into account. To do this, we propose utilizing self-paced learning to assign important samples with large weights, learning a transformation matrix for conducting feature selection to remove redundant features, and learning a graph matrix from the low-dimensional data of original data to preserve the data structure. As a consequence, both the important samples and the useful features are used to select support vectors in the SVM framework. Experimental analysis on four synthetic and sixteen benchmark data sets demonstrated that our method outperformed state-of-the-art methods in terms of both binary classification and multi-class classification tasks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7 (11), 2399–2434 (2006)MathSciNetMATH Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7 (11), 2399–2434 (2006)MathSciNetMATH
2.
Zurück zum Zitat Belousov, A.I., Verzakov, S.A., Von Frese, J.: Applicational aspects of support vector machines. Journal of Chemometrics: A Journal of the Chemometrics Society 16 (8-10), 482–489 (2002)CrossRef Belousov, A.I., Verzakov, S.A., Von Frese, J.: Applicational aspects of support vector machines. Journal of Chemometrics: A Journal of the Chemometrics Society 16 (8-10), 482–489 (2002)CrossRef
3.
Zurück zum Zitat Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: COLT, pp 144–152 (1992) Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: COLT, pp 144–152 (1992)
4.
Zurück zum Zitat Boyd, S.: Convex optimization of graph laplacian eigenvalues. In: ICM, pp 1311–1319 (2006) Boyd, S.: Convex optimization of graph laplacian eigenvalues. In: ICM, pp 1311–1319 (2006)
5.
Zurück zum Zitat Chang, C.-C., Lin, C.-J.: Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)CrossRef Chang, C.-C., Lin, C.-J.: Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)CrossRef
6.
Zurück zum Zitat Chen, Y., Gupta, M.R., Recht, B.: Learning kernels from indefinite similarities. In: ICML, pp 145–152 (2009) Chen, Y., Gupta, M.R., Recht, B.: Learning kernels from indefinite similarities. In: ICML, pp 145–152 (2009)
7.
Zurück zum Zitat Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2(12), 265–292 (2001)MATH Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2(12), 265–292 (2001)MATH
8.
Zurück zum Zitat Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1–38 (2010)MathSciNetCrossRef Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1–38 (2010)MathSciNetCrossRef
9.
Zurück zum Zitat Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the l 1-ball for learning in high dimensions. In: ICML, pp 272–279 (2008) Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the l 1-ball for learning in high dimensions. In: ICML, pp 272–279 (2008)
10.
Zurück zum Zitat Fan, Y., He, R., Liang, J., Hu, B.: Self-paced learning: An implicit regularization perspective. In: AAAI (2017) Fan, Y., He, R., Liang, J., Hu, B.: Self-paced learning: An implicit regularization perspective. In: AAAI (2017)
11.
Zurück zum Zitat Gan, J., Wen, G., Yu, H., Zheng, W., Lei, C.: Supervised feature selection by self-paced learning regression. Pattern Recognition Letters (2018) Gan, J., Wen, G., Yu, H., Zheng, W., Lei, C.: Supervised feature selection by self-paced learning regression. Pattern Recognition Letters (2018)
12.
13.
Zurück zum Zitat Gu, B., Quan, X., Gu, V.Y., Sheng, S., Zheng, G.: Chunk incremental learning for cost-sensitive hinge loss support vector machine. Pattern Recogn. 83, 196–208 (2018)CrossRef Gu, B., Quan, X., Gu, V.Y., Sheng, S., Zheng, G.: Chunk incremental learning for cost-sensitive hinge loss support vector machine. Pattern Recogn. 83, 196–208 (2018)CrossRef
14.
Zurück zum Zitat Gunasekar, S., Woodworth, B.E., Bhojanapalli, S., Neyshabur, B., Srebro, N.: Implicit regularization in matrix factorization. In: NIPS, pp 6151–6159 (2017) Gunasekar, S., Woodworth, B.E., Bhojanapalli, S., Neyshabur, B., Srebro, N.: Implicit regularization in matrix factorization. In: NIPS, pp 6151–6159 (2017)
15.
Zurück zum Zitat Iranmehr, A., Masnadi-Shirazi, H., Vasconcelos, N.: Cost-sensitive support vector machines. Neurocomputing 343, 50–64 (2019)CrossRef Iranmehr, A., Masnadi-Shirazi, H., Vasconcelos, N.: Cost-sensitive support vector machines. Neurocomputing 343, 50–64 (2019)CrossRef
16.
Zurück zum Zitat Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: NIPS, pp 1189–1197 (2010) Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: NIPS, pp 1189–1197 (2010)
17.
Zurück zum Zitat Lafta, R., Zhang, J., Tao, X., Li, Y., Diykh, M., Lin, J.C.-W.: A structural graph-coupled advanced machine learning ensemble model for disease risk prediction in a telehealthcare environment. In: Big Data in Engineering Applications, pp 363–384 (2018) Lafta, R., Zhang, J., Tao, X., Li, Y., Diykh, M., Lin, J.C.-W.: A structural graph-coupled advanced machine learning ensemble model for disease risk prediction in a telehealthcare environment. In: Big Data in Engineering Applications, pp 363–384 (2018)
18.
Zurück zum Zitat Lei, C., Zhu, X.: Unsupervised feature selection via local structure learning and sparse learning. Multimed. Tools Appl. 77(22), 29605–29622 (2018)CrossRef Lei, C., Zhu, X.: Unsupervised feature selection via local structure learning and sparse learning. Multimed. Tools Appl. 77(22), 29605–29622 (2018)CrossRef
19.
Zurück zum Zitat Lei, Y., Dogan, Ü., Zhou, D.-X., Kloft, M.: Data-dependent generalization bounds for multi-class classification. IEEE Trans. Inform. Theory, 65(5) (2019)MathSciNetCrossRef Lei, Y., Dogan, Ü., Zhou, D.-X., Kloft, M.: Data-dependent generalization bounds for multi-class classification. IEEE Trans. Inform. Theory, 65(5) (2019)MathSciNetCrossRef
20.
Zurück zum Zitat Liu, Z., Elashoff, D., Piantadosi, S.: Sparse support vector machines with l0 approximation for ultra-high dimensional omics data. Artif. Intell. Med. 96, 134–141 (2019)CrossRef Liu, Z., Elashoff, D., Piantadosi, S.: Sparse support vector machines with l0 approximation for ultra-high dimensional omics data. Artif. Intell. Med. 96, 134–141 (2019)CrossRef
21.
Zurück zum Zitat Meng, D., Zhao, Q., Jiang, L.: What objective does self-paced learning indeed optimize? arXiv:1511.06049 (2015) Meng, D., Zhao, Q., Jiang, L.: What objective does self-paced learning indeed optimize? arXiv:1511.​06049 (2015)
22.
Zurück zum Zitat Mygdalis, V., Tefas, A., Pitas, I.: Learning multi-graph regularization for svm classification. In: ICIP, pp 1608–1612 (2018) Mygdalis, V., Tefas, A., Pitas, I.: Learning multi-graph regularization for svm classification. In: ICIP, pp 1608–1612 (2018)
23.
Zurück zum Zitat Mygdalis, V., Tefas, A., Pitas, I.: Exploiting multiplex data relationships in support vector machines. Pattern Recogn. 85, 70–77 (2019)CrossRef Mygdalis, V., Tefas, A., Pitas, I.: Exploiting multiplex data relationships in support vector machines. Pattern Recogn. 85, 70–77 (2019)CrossRef
24.
Zurück zum Zitat Nie, F., Huang, Y., Wang, X., Huang, H.: New primal svm solver with linear computational cost for big data classifications. In: ICML, vol. 32, pp 505–513 (2014) Nie, F., Huang, Y., Wang, X., Huang, H.: New primal svm solver with linear computational cost for big data classifications. In: ICML, vol. 32, pp 505–513 (2014)
25.
Zurück zum Zitat Paige, C.C., Saunders, M.A.: Lsqr: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)MathSciNetCrossRef Paige, C.C., Saunders, M.A.: Lsqr: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)MathSciNetCrossRef
26.
Zurück zum Zitat Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, O., Grisel, B., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12(10), 2825–2830 (2011)MathSciNetMATH Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, O., Grisel, B., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12(10), 2825–2830 (2011)MathSciNetMATH
27.
Zurück zum Zitat Peng, H., Fan, Y.: A general framework for sparsity regularized feature selection via iteratively reweighted least square minimization. In: AAAI, pp 2471–2477 (2017) Peng, H., Fan, Y.: A general framework for sparsity regularized feature selection via iteratively reweighted least square minimization. In: AAAI, pp 2471–2477 (2017)
28.
Zurück zum Zitat Pham, T., Tao, X., Zhanag, J., Yong, J., Zhang, W., Cai, Y.: Mining heterogeneous information graph for health status classification. In: BESC, pp 73–78 (2018) Pham, T., Tao, X., Zhanag, J., Yong, J., Zhang, W., Cai, Y.: Mining heterogeneous information graph for health status classification. In: BESC, pp 73–78 (2018)
29.
Zurück zum Zitat Ren, Y., Zhao, P., Sheng, Y., Yao, D., Xu, Z.: Robust softmax regression for multi-class classification with self-paced learning. In: AAAI, pp 2641–2647 (2017) Ren, Y., Zhao, P., Sheng, Y., Yao, D., Xu, Z.: Robust softmax regression for multi-class classification with self-paced learning. In: AAAI, pp 2641–2647 (2017)
30.
Zurück zum Zitat Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: A comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)CrossRef Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: A comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)CrossRef
31.
Zurück zum Zitat Shawe-Taylor, J., Cristianini, N.: Support vector machines. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 93–112 (2000) Shawe-Taylor, J., Cristianini, N.: Support vector machines. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 93–112 (2000)
32.
Zurück zum Zitat Shen, F., Xu, Y., Liu, L., Yang, Y., Huang, Z., Shen, H.T.: Unsupervised deep hashing with similarity-adaptive and discrete optimization. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 3034–3044 (2018)CrossRef Shen, F., Xu, Y., Liu, L., Yang, Y., Huang, Z., Shen, H.T.: Unsupervised deep hashing with similarity-adaptive and discrete optimization. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 3034–3044 (2018)CrossRef
33.
Zurück zum Zitat Singh, D., Mohan, C.K.: Graph formulation of video activities for abnormal activity recognition. Pattern Recogn. 65, 265–272 (2017)CrossRef Singh, D., Mohan, C.K.: Graph formulation of video activities for abnormal activity recognition. Pattern Recogn. 65, 265–272 (2017)CrossRef
34.
Zurück zum Zitat Tang, F., Adam, L., Si, B.: Group feature selection with multiclass support vector machine. Neurocomputing 317, 42–49 (2018)CrossRef Tang, F., Adam, L., Si, B.: Group feature selection with multiclass support vector machine. Neurocomputing 317, 42–49 (2018)CrossRef
35.
Zurück zum Zitat Vapnik, V.: Pattern recognition using generalized portrait method. Autom. Remote. Control. 24, 774–780 (1963) Vapnik, V.: Pattern recognition using generalized portrait method. Autom. Remote. Control. 24, 774–780 (1963)
36.
Zurück zum Zitat Wang, C., Ye, Q., Luo, P., Ye, N., Fu, L.: Robust capped l1-norm twin support vector machine. Neural Netw. 114, 47–59 (2019)CrossRef Wang, C., Ye, Q., Luo, P., Ye, N., Fu, L.: Robust capped l1-norm twin support vector machine. Neural Netw. 114, 47–59 (2019)CrossRef
37.
Zurück zum Zitat Wu, J., Zhou, Z.: Sequence-based prediction of microrna-binding residues in proteins using cost-sensitive Laplacian support vector machines. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(3), 752–759 (2013)CrossRef Wu, J., Zhou, Z.: Sequence-based prediction of microrna-binding residues in proteins using cost-sensitive Laplacian support vector machines. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(3), 752–759 (2013)CrossRef
38.
Zurück zum Zitat Xu, H., Xue, H., Chen, X., Wang, Y.: Solving indefinite kernel support vector machine with difference of convex functions programming. In: AAAI (2017) Xu, H., Xue, H., Chen, X., Wang, Y.: Solving indefinite kernel support vector machine with difference of convex functions programming. In: AAAI (2017)
39.
Zurück zum Zitat Xu, J., Nie, F., Han, J.: Feature selection via scaling factor integrated multi-class support vector machines. In: IJCAI, pp 3168–3174 (2017) Xu, J., Nie, F., Han, J.: Feature selection via scaling factor integrated multi-class support vector machines. In: IJCAI, pp 3168–3174 (2017)
40.
Zurück zum Zitat Yuan, G.-X., Chang, K.-W., Hsieh, C.-J., Lin, C.-J.: A comparison of optimization methods and software for large-scale l1-regularized linear classification. J. Mach. Learn. Res. 11(11), 3183–3234 (2010)MathSciNetMATH Yuan, G.-X., Chang, K.-W., Hsieh, C.-J., Lin, C.-J.: A comparison of optimization methods and software for large-scale l1-regularized linear classification. J. Mach. Learn. Res. 11(11), 3183–3234 (2010)MathSciNetMATH
41.
Zurück zum Zitat Zhang, Y., Zhou, Z.: Cost-sensitive face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1758–1769 (2009)CrossRef Zhang, Y., Zhou, Z.: Cost-sensitive face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1758–1769 (2009)CrossRef
42.
Zurück zum Zitat Zhang, D., Meng, D., Zhao, L., Han, J.: Bridging saliency detection to weakly supervised object detection based on self-paced curriculum learning. arXiv:1703.01290 (2017) Zhang, D., Meng, D., Zhao, L., Han, J.: Bridging saliency detection to weakly supervised object detection based on self-paced curriculum learning. arXiv:1703.​01290 (2017)
43.
Zurück zum Zitat Zhang, J., Tan, L., Tao, X.: On relational learning and discovery in social networks: A survey. Int. J. Mach. Learn. Cybern. 10(8), 2085–2102 (2019)CrossRef Zhang, J., Tan, L., Tao, X.: On relational learning and discovery in social networks: A survey. Int. J. Mach. Learn. Cybern. 10(8), 2085–2102 (2019)CrossRef
45.
Zurück zum Zitat Zheng, W., Zhu, X., Zhu, Y., Hu, R., Lei, C.: Dynamic graph learning for spectral feature selection. Multimed. Tools Appl. 77(22), 29739–29755 (2018)CrossRef Zheng, W., Zhu, X., Zhu, Y., Hu, R., Lei, C.: Dynamic graph learning for spectral feature selection. Multimed. Tools Appl. 77(22), 29739–29755 (2018)CrossRef
46.
Zurück zum Zitat Zhu, J., Rosset, S., Tibshirani, R., Hastie, T.J.: 1-norm support vector machines. In: NIPS, pp 49–56 (2004) Zhu, J., Rosset, S., Tibshirani, R., Hastie, T.J.: 1-norm support vector machines. In: NIPS, pp 49–56 (2004)
47.
Zurück zum Zitat Zhu, X., Li, X., Zhang, S., Xu, Z., Yu, L., Wang, C.: Graph pca hashing for similarity search. IEEE Trans. Multimed. 19(9), 2033–2044 (2017)CrossRef Zhu, X., Li, X., Zhang, S., Xu, Z., Yu, L., Wang, C.: Graph pca hashing for similarity search. IEEE Trans. Multimed. 19(9), 2033–2044 (2017)CrossRef
49.
Zurück zum Zitat Zhu, X., Zhang, S., Hu, R., He, W., Lei, C., Zhu, P.: One-step multi-view spectral clustering. IEEE Trans. Knowl. Data Eng. 31(10), 2022–2034 (2019)CrossRef Zhu, X., Zhang, S., Hu, R., He, W., Lei, C., Zhu, P.: One-step multi-view spectral clustering. IEEE Trans. Knowl. Data Eng. 31(10), 2022–2034 (2019)CrossRef
50.
Zurück zum Zitat Zhu, X., Zhang, S., Li, Y., Zhang, J., Yang, L., Fang, Y.: Low-rank sparse subspace for spectral clustering. IEEE Trans. Knowl. Data Eng. 31(8), 1532–1543 (2019)CrossRef Zhu, X., Zhang, S., Li, Y., Zhang, J., Yang, L., Fang, Y.: Low-rank sparse subspace for spectral clustering. IEEE Trans. Knowl. Data Eng. 31(8), 1532–1543 (2019)CrossRef
Metadaten
Titel
Robust SVM with adaptive graph learning
verfasst von
Rongyao Hu
Xiaofeng Zhu
Yonghua Zhu
Jiangzhang Gan
Publikationsdatum
27.12.2019
Verlag
Springer US
Erschienen in
World Wide Web / Ausgabe 3/2020
Print ISSN: 1386-145X
Elektronische ISSN: 1573-1413
DOI
https://doi.org/10.1007/s11280-019-00766-x

Weitere Artikel der Ausgabe 3/2020

World Wide Web 3/2020 Zur Ausgabe

Premium Partner