Skip to main content
Erschienen in: Experimental Mechanics 6/2015

01.07.2015

Cruciform Specimen Design and Verification for Constitutive Identification of Anisotropic Sheets

verfasst von: N. Deng, T. Kuwabara, Y. P. Korkolis

Erschienen in: Experimental Mechanics | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel cruciform specimen design is proposed, which is a composite of existing specimens. The typical shortcomings of many existing designs are that the strains achievable in the test-section before failure are very limited and the stresses in the test-section cannot be easily determined from experimental measurements, or without the use of an inverse finite element analysis. The proposed specimen overcomes both of these difficulties. The proposed geometry features slotted arms; very tight corner radii; a test-section of reduced thickness; and a sharp transition between the arms and the test-section. This new geometry is investigated numerically, at first. It is shown that the stress and strain distributions in the test-section are very uniform, with the exception of a thin outer boundary-layer. This implies that the strains can be measured anywhere in the test-section (except at the boundary-layer) without significant impact on the results. Subsequently, a virtual biaxial experiment is described. Two materials (steel 1018 and aluminum Al-2090-T3) are considered, each with an appropriate material model (Hill 1948 and Yld2004-3D, respectively). In both cases, the proposed specimen identifies the material model very accurately, using only the load cell readings and strains measured within the test-section. Finally, the proposed specimen is used in biaxial experiments to identify an appropriate material model for the dual-phase steel DP 590. It is shown that the Yld2004-3D model captures the material behavior up to almost 10 % strain; however the coefficients of this model should evolve with plastic deformation, for best fitting performance. During the course of the experimental study, the uniformity of the strain fields is assessed using the Digital Image Correlation method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kuwabara T (2007) Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations. Int J Plast 23:385–419MATHCrossRef Kuwabara T (2007) Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations. Int J Plast 23:385–419MATHCrossRef
2.
Zurück zum Zitat Arcan M, Hashin Z, Voloshin A (1978) A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Exp Mech 18:141–146CrossRef Arcan M, Hashin Z, Voloshin A (1978) A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Exp Mech 18:141–146CrossRef
3.
Zurück zum Zitat Mohr D, Oswald M (2008) A new experimental technique for the multi-axial testing of advanced high strength steels. Exp Mech 48:65–77CrossRef Mohr D, Oswald M (2008) A new experimental technique for the multi-axial testing of advanced high strength steels. Exp Mech 48:65–77CrossRef
4.
Zurück zum Zitat Haltom SS, Kyriakides S, Ravi-Chandar K (2013) Ductile failure under combined shear and tension. Int J Solids Struct 50:1507–1522CrossRef Haltom SS, Kyriakides S, Ravi-Chandar K (2013) Ductile failure under combined shear and tension. Int J Solids Struct 50:1507–1522CrossRef
5.
Zurück zum Zitat Korkolis YP, Kyriakides S (2008) Inflation and burst of anisotropic aluminum tubes for hydroforming applications. Int J Plast 24(3):509–543MATHCrossRef Korkolis YP, Kyriakides S (2008) Inflation and burst of anisotropic aluminum tubes for hydroforming applications. Int J Plast 24(3):509–543MATHCrossRef
6.
Zurück zum Zitat Korkolis YP, Kyriakides S (2009) Path-dependent failure of inflated aluminum tubes. Int J Plast 25:2059–2080CrossRef Korkolis YP, Kyriakides S (2009) Path-dependent failure of inflated aluminum tubes. Int J Plast 25:2059–2080CrossRef
7.
Zurück zum Zitat Korkolis YP, Kyriakides S, Giagmouris T, Lee LH (2010) Constitutive modeling and rupture predictions of Al-6061-T6 tubes under biaxial loading paths. ASME J Appl Mech, 77, 64501-1 to -5 Korkolis YP, Kyriakides S, Giagmouris T, Lee LH (2010) Constitutive modeling and rupture predictions of Al-6061-T6 tubes under biaxial loading paths. ASME J Appl Mech, 77, 64501-1 to -5
8.
Zurück zum Zitat Kuwabara T, Yoshida K, Narihara K, Takahashi S (2005) Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure. Int J Plast 21:101–117MATHCrossRef Kuwabara T, Yoshida K, Narihara K, Takahashi S (2005) Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure. Int J Plast 21:101–117MATHCrossRef
9.
Zurück zum Zitat Kuwabara T, Sugawara F (2013) Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range. Int J Plast 45:103–118CrossRef Kuwabara T, Sugawara F (2013) Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range. Int J Plast 45:103–118CrossRef
10.
Zurück zum Zitat Kuwabara T (2014) Biaxial stress testing methods for sheet metals. In Comprehensive Materials Processing; Van Tyne CJ, Ed.; Elsevier Ltd.; Vol. 1, pp. 95–111 Kuwabara T (2014) Biaxial stress testing methods for sheet metals. In Comprehensive Materials Processing; Van Tyne CJ, Ed.; Elsevier Ltd.; Vol. 1, pp. 95–111
11.
Zurück zum Zitat Kuwabara T, Kuroda M, Tvergaard V, Nomura K (2000) Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets. Acta Mater 48:2071–2079CrossRef Kuwabara T, Kuroda M, Tvergaard V, Nomura K (2000) Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets. Acta Mater 48:2071–2079CrossRef
12.
Zurück zum Zitat Shiratori E, Ikegami K (1968) Experimental study of the subsequent yield surface by using cross-shaped specimens. J Mech Phys Solids 16:373–394CrossRef Shiratori E, Ikegami K (1968) Experimental study of the subsequent yield surface by using cross-shaped specimens. J Mech Phys Solids 16:373–394CrossRef
13.
Zurück zum Zitat Kreißig R, Schindler J (1986) Some experimental results on yield condition in plane stress state. Acta Mech 65:169–179CrossRef Kreißig R, Schindler J (1986) Some experimental results on yield condition in plane stress state. Acta Mech 65:169–179CrossRef
14.
Zurück zum Zitat Müller W, Pöhlandt KJ (1996) New experiments for determining yield loci of sheet metal. J Mater Process Technol 60:643–648CrossRef Müller W, Pöhlandt KJ (1996) New experiments for determining yield loci of sheet metal. J Mater Process Technol 60:643–648CrossRef
15.
Zurück zum Zitat Kuwabara T, Ikeda S, Kuroda T (1998) Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension. J Mater Process Technol 80–81:517–523CrossRef Kuwabara T, Ikeda S, Kuroda T (1998) Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension. J Mater Process Technol 80–81:517–523CrossRef
16.
Zurück zum Zitat Kuwabara T, Van Bael A, Iizuka E (2002) Measurement and analysis of yield locus and work hardening characteristics of steel sheets with different R-values. Acta Mater 50(14):3717–3729CrossRef Kuwabara T, Van Bael A, Iizuka E (2002) Measurement and analysis of yield locus and work hardening characteristics of steel sheets with different R-values. Acta Mater 50(14):3717–3729CrossRef
17.
Zurück zum Zitat Kuwabara T, Ikeda S (2002) Measurement and analysis of work hardening of sheet steels subjected to plane strain tension. Tetsu-to-Hagané 88(6):334–339 (in Japanese) Kuwabara T, Ikeda S (2002) Measurement and analysis of work hardening of sheet steels subjected to plane strain tension. Tetsu-to-Hagané 88(6):334–339 (in Japanese)
18.
Zurück zum Zitat Naka T, Nakayama Y, Uemori T, Hino R, Yoshida F (2003) Effects of temperature on yield locus for 5083 aluminum alloy sheet. J Mater Process Technol 140:494–499CrossRef Naka T, Nakayama Y, Uemori T, Hino R, Yoshida F (2003) Effects of temperature on yield locus for 5083 aluminum alloy sheet. J Mater Process Technol 140:494–499CrossRef
19.
Zurück zum Zitat Gozzi J, Olsson A, Lagerqvist O (2005) Experimental investigation of the behavior of extra high strength steel. Exp Mech 45:533–540CrossRef Gozzi J, Olsson A, Lagerqvist O (2005) Experimental investigation of the behavior of extra high strength steel. Exp Mech 45:533–540CrossRef
20.
Zurück zum Zitat Andar MO, Kuwabara T, Yonemura S, Uenishi A (2010) Elastic-plastic and inelastic characteristics of high strength steel sheets under biaxial loading and unloading. ISIJ Int 50:613–619CrossRef Andar MO, Kuwabara T, Yonemura S, Uenishi A (2010) Elastic-plastic and inelastic characteristics of high strength steel sheets under biaxial loading and unloading. ISIJ Int 50:613–619CrossRef
21.
Zurück zum Zitat Kulawinski D, Nagel K, Henkel S, Hübner P, Fischer H, Kuna M, Biermann H (2011) Characterization of stress–strain behavior of a cast TRIP steel under different biaxial planar load ratios. Eng Fract Mech 78:1684–1695CrossRef Kulawinski D, Nagel K, Henkel S, Hübner P, Fischer H, Kuna M, Biermann H (2011) Characterization of stress–strain behavior of a cast TRIP steel under different biaxial planar load ratios. Eng Fract Mech 78:1684–1695CrossRef
22.
Zurück zum Zitat Ferron G, Makinde AJ (1988) Design and development of a biaxial strength testing device. J Test Eval 16:253–256CrossRef Ferron G, Makinde AJ (1988) Design and development of a biaxial strength testing device. J Test Eval 16:253–256CrossRef
23.
Zurück zum Zitat Makinde A, Thibodeau L, Neale KW (1992) Development of an apparatus for biaxial testing using cruciform specimens. Exp Mech 32:138–144CrossRef Makinde A, Thibodeau L, Neale KW (1992) Development of an apparatus for biaxial testing using cruciform specimens. Exp Mech 32:138–144CrossRef
24.
Zurück zum Zitat Demmerle S, Boehler JP (1993) Optimal design of biaxial tensile cruciform specimens. J Mech Phys Solids 41(1):143–181CrossRef Demmerle S, Boehler JP (1993) Optimal design of biaxial tensile cruciform specimens. J Mech Phys Solids 41(1):143–181CrossRef
25.
Zurück zum Zitat Boehler JP, Demmerle S, Koss S (1994) A new direct biaxial testing machine for anisotropic materials. Exp Mech 34:1–9CrossRef Boehler JP, Demmerle S, Koss S (1994) A new direct biaxial testing machine for anisotropic materials. Exp Mech 34:1–9CrossRef
26.
Zurück zum Zitat Lin SB, Ding JL (1995) Experimental study of the plastic yielding of rolled sheet metals with the cruciform plate specimen. Int J Plast 11(5):583–604CrossRef Lin SB, Ding JL (1995) Experimental study of the plastic yielding of rolled sheet metals with the cruciform plate specimen. Int J Plast 11(5):583–604CrossRef
27.
Zurück zum Zitat Yu Y, Wan M, Wu XD, Zhou XB (2002) Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM. J Mater Process Technol 123:67–70CrossRef Yu Y, Wan M, Wu XD, Zhou XB (2002) Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM. J Mater Process Technol 123:67–70CrossRef
28.
Zurück zum Zitat Green DE, Neale KW, MacEwen SR, Makinde A, Perrin R (2004) Experimental investigation of the biaxial behaviour of an aluminum sheet. Int J Plast 20:1677–1706MATHCrossRef Green DE, Neale KW, MacEwen SR, Makinde A, Perrin R (2004) Experimental investigation of the biaxial behaviour of an aluminum sheet. Int J Plast 20:1677–1706MATHCrossRef
29.
Zurück zum Zitat Moondra S, Kinsey BL (2004) Determination of cruciform specimen for stress based failure criterion evaluation. Trans NAMRI/SME, 247–254 Moondra S, Kinsey BL (2004) Determination of cruciform specimen for stress based failure criterion evaluation. Trans NAMRI/SME, 247–254
30.
Zurück zum Zitat Merklein M, Biasutti M (2013) Development of a biaxial tensile machine for characterization of sheet metals. J Mater Process Technol 213:939–946CrossRef Merklein M, Biasutti M (2013) Development of a biaxial tensile machine for characterization of sheet metals. J Mater Process Technol 213:939–946CrossRef
31.
Zurück zum Zitat Tasan CC, Hoefnagels JPM, Quaak G, Geers MGD (2008) In-plane biaxial loading of sheet metal until fracture. In Proc. 2008 SEM XI Int’l Cong. & Expo. on Exp. & Applied Mech., Orlando, Florida (pp. 2–5) Tasan CC, Hoefnagels JPM, Quaak G, Geers MGD (2008) In-plane biaxial loading of sheet metal until fracture. In Proc. 2008 SEM XI Int’l Cong. & Expo. on Exp. & Applied Mech., Orlando, Florida (pp. 2–5)
32.
Zurück zum Zitat Hoferlin E, Van Bael A, Van Houtte P, Steyaert G, De Maré C (2000) The design of a biaxial tensile test and its use for the validation of crystallographic yield loci. Model Simul Mater Sci Eng 8:423–433CrossRef Hoferlin E, Van Bael A, Van Houtte P, Steyaert G, De Maré C (2000) The design of a biaxial tensile test and its use for the validation of crystallographic yield loci. Model Simul Mater Sci Eng 8:423–433CrossRef
33.
Zurück zum Zitat Borsutzki M, Keßler L, Sonne HM (2002) Kennzeichnung des verfestigungsverhaltens von werkstoffen mit der biaxialprüfung. In Werkstoffprüfung 2002, Proc. DVM-Conference, Bad Nauheim, p. 186 (in German) Borsutzki M, Keßler L, Sonne HM (2002) Kennzeichnung des verfestigungsverhaltens von werkstoffen mit der biaxialprüfung. In Werkstoffprüfung 2002, Proc. DVM-Conference, Bad Nauheim, p. 186 (in German)
34.
Zurück zum Zitat Abu-Farha F, Hector LG Jr, Khraisheh M (2009) Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials. JOM 61(8):48–56CrossRef Abu-Farha F, Hector LG Jr, Khraisheh M (2009) Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials. JOM 61(8):48–56CrossRef
35.
Zurück zum Zitat Hannon A, Tiernan P (2008) A review of planar biaxial tensile test systems for sheet metal. J Mater Process Technol 198:1–13CrossRef Hannon A, Tiernan P (2008) A review of planar biaxial tensile test systems for sheet metal. J Mater Process Technol 198:1–13CrossRef
36.
Zurück zum Zitat Zhao X, Berwick ZC, Krieger JF, Chen H, Chambers S, Kassab GS (2014) Novel design of cruciform specimens for planar biaxial testing of soft materials. Exp Mech 54:343–356CrossRef Zhao X, Berwick ZC, Krieger JF, Chen H, Chambers S, Kassab GS (2014) Novel design of cruciform specimens for planar biaxial testing of soft materials. Exp Mech 54:343–356CrossRef
37.
Zurück zum Zitat Çakmak UD, Major Z (2014) Experimental thermomechanical analysis of elastomers under Uni-and biaxial tensile stress state. Exp Mech 54:653–663CrossRef Çakmak UD, Major Z (2014) Experimental thermomechanical analysis of elastomers under Uni-and biaxial tensile stress state. Exp Mech 54:653–663CrossRef
38.
Zurück zum Zitat Guélon T, Toussaint E, Le Cam JB, Promma N, Grédiac M (2009) A new characterisation method for rubber. Polym Test 28:715–723CrossRef Guélon T, Toussaint E, Le Cam JB, Promma N, Grédiac M (2009) A new characterisation method for rubber. Polym Test 28:715–723CrossRef
39.
Zurück zum Zitat Hanabusa Y, Takizawa H, Kuwabara T (2010) Evaluation of accuracy of stress measurements determined in biaxial stress tests with cruciform specimen using numerical method. Steel Res Int 81:1376–1379 Hanabusa Y, Takizawa H, Kuwabara T (2010) Evaluation of accuracy of stress measurements determined in biaxial stress tests with cruciform specimen using numerical method. Steel Res Int 81:1376–1379
40.
Zurück zum Zitat Hanabusa Y, Takizawa H, Kuwabara T (2013) Numerical verification of a biaxial tensile test method using a cruciform specimen. J Mater Process Technol 213:961–970CrossRef Hanabusa Y, Takizawa H, Kuwabara T (2013) Numerical verification of a biaxial tensile test method using a cruciform specimen. J Mater Process Technol 213:961–970CrossRef
41.
Zurück zum Zitat ISO 16842 (2014) Metallic materials — Sheet and strip — Biaxial tensile testing method using a cruciform test piece. ISO 16842 (2014) Metallic materials — Sheet and strip — Biaxial tensile testing method using a cruciform test piece.
42.
Zurück zum Zitat Walters CL (2013) The effect of machining the gage section on biaxial tension/shear plasticity experiments of DP780 sheet steel. Exp Mech 53:1647–1659CrossRef Walters CL (2013) The effect of machining the gage section on biaxial tension/shear plasticity experiments of DP780 sheet steel. Exp Mech 53:1647–1659CrossRef
43.
Zurück zum Zitat Rousselier G, Barlat F, Yoon JW (2009) A novel approach for modeling of anisotropic hardening and non proportional loading paths, application to finite element analysis of deep drawing. Int J Mater Form 2(1):367–370CrossRef Rousselier G, Barlat F, Yoon JW (2009) A novel approach for modeling of anisotropic hardening and non proportional loading paths, application to finite element analysis of deep drawing. Int J Mater Form 2(1):367–370CrossRef
44.
Zurück zum Zitat Banabic D (2010) Sheet metal forming processes: constitutive modelling and numerical simulation. Springer Science & Business Media, Heidelberg Banabic D (2010) Sheet metal forming processes: constitutive modelling and numerical simulation. Springer Science & Business Media, Heidelberg
45.
Zurück zum Zitat Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE (2005) Linear transformation-based anisotropic yield functions. Int J Plast 21:1009–1039MATHCrossRef Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE (2005) Linear transformation-based anisotropic yield functions. Int J Plast 21:1009–1039MATHCrossRef
46.
Zurück zum Zitat Yoon JW, Barlat F, Dick RE, Karabin ME (2006) Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int J Plast 22:174–193MATHCrossRef Yoon JW, Barlat F, Dick RE, Karabin ME (2006) Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int J Plast 22:174–193MATHCrossRef
47.
Zurück zum Zitat Hill R, Hutchinson JW (1992) Differential hardening in sheet metal under biaxial loading: a theoretical framework. J Appl Mech ASME 59:1–9CrossRef Hill R, Hutchinson JW (1992) Differential hardening in sheet metal under biaxial loading: a theoretical framework. J Appl Mech ASME 59:1–9CrossRef
48.
Zurück zum Zitat Wilson JF, Kinsey BL, Korkolis YP (2013) Development of a biaxial loading frame for sheet metal. SME J Manuf Process 15(4):580–585CrossRef Wilson JF, Kinsey BL, Korkolis YP (2013) Development of a biaxial loading frame for sheet metal. SME J Manuf Process 15(4):580–585CrossRef
49.
Zurück zum Zitat Korkolis YP, Deng N, and Kuwabara T (in prep.) On the non-linear unloading behavior of a biaxially loaded dual-phase steel sheet Korkolis YP, Deng N, and Kuwabara T (in prep.) On the non-linear unloading behavior of a biaxially loaded dual-phase steel sheet
50.
Zurück zum Zitat Hill R, Hecker SS, Stout MG (1994) An investigation of plastic flow and differential work hardening in orthotropic brass tubes under fluid pressure and axial load. Int J Solids Struct 21:2999–3021CrossRef Hill R, Hecker SS, Stout MG (1994) An investigation of plastic flow and differential work hardening in orthotropic brass tubes under fluid pressure and axial load. Int J Solids Struct 21:2999–3021CrossRef
Metadaten
Titel
Cruciform Specimen Design and Verification for Constitutive Identification of Anisotropic Sheets
verfasst von
N. Deng
T. Kuwabara
Y. P. Korkolis
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 6/2015
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-015-9999-y

Weitere Artikel der Ausgabe 6/2015

Experimental Mechanics 6/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.