Skip to main content
Erschienen in: Experimental Mechanics 9/2019

10.07.2018

Fabrication of Hydrogels with a Stiffness Gradient Using Limited Mixing in the Hele-Shaw Geometry

verfasst von: D. Lee, K. Golden, Md. M. Rahman, A. Moran, B. Gonzalez, S. Ryu

Erschienen in: Experimental Mechanics | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogel substrates with a stiffness gradient have been used as a surrogate of the extracellular matrix (ECM) to investigate how cells respond to the stiffness of their surrounding matrix. Various fabrication methods have been proposed to create a stiffness gradient in the hydrogel substrate, and some of them rely on generating a concentration gradient in a prepolymer solution before photo-polymerization. One easy way to do so is to coalesce two prepolymer solution drops of different stiffness values in a narrow confinement formed by two glass surfaces and then to induce polymerization using ultraviolet (UV) light irradiation, as proposed by Lo et al. [Biophys. J. 2000, 79:144–152]. We have improved their method to enable modulating the obtained stiffness gradient and characterized fabricated polyacrylamide (PAAM) gels. We controlled the coalescence and mixing duration of two prepolymer drops using the lab-built Hele-Shaw cell device and glass surfaces with a superhydrophobic barrier. Limited mixing between the drops created a concentration gradient of the gel ingredient, which was converted to a stiffness gradient by UV-based photo-polymerization. Atomic force microscopy (AFM) indentation showed that the fabricated gels had the stiffness gradient zone at the center and that the width of the zone increased with the mixing duration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Discher DE, Janmey P, Wang Y-L (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143 Discher DE, Janmey P, Wang Y-L (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143
2.
Zurück zum Zitat Watt FM, Huck WTS (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14:467–473 Watt FM, Huck WTS (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14:467–473
3.
Zurück zum Zitat Charras G, Sahai E (2014) Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol 15:813–824 Charras G, Sahai E (2014) Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol 15:813–824
4.
Zurück zum Zitat Janson IA, Putnam AJ (2014) Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms. J Biomed Mater Res A 103:1248–1258 Janson IA, Putnam AJ (2014) Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms. J Biomed Mater Res A 103:1248–1258
5.
Zurück zum Zitat Levental I, Georges PC, Janmey PA (2007) Soft biological materials and their impact on cell function. Soft Matt 3:299–306 Levental I, Georges PC, Janmey PA (2007) Soft biological materials and their impact on cell function. Soft Matt 3:299–306
6.
Zurück zum Zitat Trappmann B, Chen CS (2013) How cells sense extracellular matrix stiffness: a material's perspective. Curr Op Biotechnol 24:948–953 Trappmann B, Chen CS (2013) How cells sense extracellular matrix stiffness: a material's perspective. Curr Op Biotechnol 24:948–953
7.
Zurück zum Zitat Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, Chen S, Engler AJ (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13:979–987 Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, Chen S, Engler AJ (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13:979–987
8.
Zurück zum Zitat Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689 Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689
9.
Zurück zum Zitat Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskel 60:24–34 Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskel 60:24–34
10.
Zurück zum Zitat Chen L, Zhang Z, Qiu J, Zhang L, Luo X, Jang J (2014) Chaperonin CCT-mediated AIB1 folding promotes the growth of ERα-positive breast cancer cells on hard substrates. PLoS One 9:e96085 Chen L, Zhang Z, Qiu J, Zhang L, Luo X, Jang J (2014) Chaperonin CCT-mediated AIB1 folding promotes the growth of ERα-positive breast cancer cells on hard substrates. PLoS One 9:e96085
11.
Zurück zum Zitat Whang M, Kim J (2016) Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds. Tissue Eng Regen Med 13:126–139 Whang M, Kim J (2016) Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds. Tissue Eng Regen Med 13:126–139
12.
Zurück zum Zitat Burdick JA, Khademhosseini A, Langer R (2004) Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20:5153–5156 Burdick JA, Khademhosseini A, Langer R (2004) Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20:5153–5156
13.
Zurück zum Zitat Zaari N, Rajagopalan P, Kim SK, Engler AJ, Wong JY (2004) Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv Mater 16:2133–2137 Zaari N, Rajagopalan P, Kim SK, Engler AJ, Wong JY (2004) Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv Mater 16:2133–2137
14.
Zurück zum Zitat Sundararaghavan HG, Monteiro GA, Firestein BL, Shreiber DI (2009) Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol Bioeng 102:632–643 Sundararaghavan HG, Monteiro GA, Firestein BL, Shreiber DI (2009) Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol Bioeng 102:632–643
15.
Zurück zum Zitat Byfield FJ, Wen Q, Levental I, Nordstrom K, Arratia PE, Miller RT, Janmey PA (2009) Absence of filamin a prevents cells from responding to stiffness gradients on gels coated with collagen but not fibronectin. Biophys J 96:5095–5102 Byfield FJ, Wen Q, Levental I, Nordstrom K, Arratia PE, Miller RT, Janmey PA (2009) Absence of filamin a prevents cells from responding to stiffness gradients on gels coated with collagen but not fibronectin. Biophys J 96:5095–5102
16.
Zurück zum Zitat Isenberg BC, DiMilla PA, Walker M, Kim S, Wong JY (2009) Vascular smooth muscle cell durotaxis depends on substrate stiffness graident strength. Biophys J 97:1313–1322 Isenberg BC, DiMilla PA, Walker M, Kim S, Wong JY (2009) Vascular smooth muscle cell durotaxis depends on substrate stiffness graident strength. Biophys J 97:1313–1322
17.
Zurück zum Zitat Orsi G, Fagnano M, De Maria C, Montemurro F, Vozzi G (2017) A new 3D concentration gradient maker and its application in building hydrogels with a 3D stiffness gradient. J Tissue Eng Regen Med 11:256–264 Orsi G, Fagnano M, De Maria C, Montemurro F, Vozzi G (2017) A new 3D concentration gradient maker and its application in building hydrogels with a 3D stiffness gradient. J Tissue Eng Regen Med 11:256–264
18.
Zurück zum Zitat Lo C-M, Wang H-B, Dembo M, Wang Y-L (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152 Lo C-M, Wang H-B, Dembo M, Wang Y-L (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152
19.
Zurück zum Zitat Wang H-B, Dembo M, Hanks SK, Wang Y-I (2001) Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci U S A 98:11295–11300 Wang H-B, Dembo M, Hanks SK, Wang Y-I (2001) Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci U S A 98:11295–11300
20.
Zurück zum Zitat Raab M, Swift J, Dingal PCDP, Shah P, Shin J-W, Discher DE (2012) Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J Cell Biol 199:669–683 Raab M, Swift J, Dingal PCDP, Shah P, Shin J-W, Discher DE (2012) Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J Cell Biol 199:669–683
21.
Zurück zum Zitat Nemir S, Hayenga HN, West JL (2010) PEGDA hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity. Biotechnol Bioeng 105:636–644 Nemir S, Hayenga HN, West JL (2010) PEGDA hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity. Biotechnol Bioeng 105:636–644
22.
Zurück zum Zitat Diederich VEG, Studer P, Kern A, Lattuada M, Storti G, Sharma RI, Snedeker JG, Morbidelli M (2013) Bioactive polyacrylamide hydrogels with gradients in mechanical stiffness. Biotechnol Bioeng 110:1508–1519 Diederich VEG, Studer P, Kern A, Lattuada M, Storti G, Sharma RI, Snedeker JG, Morbidelli M (2013) Bioactive polyacrylamide hydrogels with gradients in mechanical stiffness. Biotechnol Bioeng 110:1508–1519
23.
Zurück zum Zitat Du Y, Hancock MJ, He J, Villa-Uribe JL, Wang B, Cropek DM, Khademhosseini A (2010) Convection-driven generation of long-range material gradients. Biomaterials 31:2686–2694 Du Y, Hancock MJ, He J, Villa-Uribe JL, Wang B, Cropek DM, Khademhosseini A (2010) Convection-driven generation of long-range material gradients. Biomaterials 31:2686–2694
24.
Zurück zum Zitat Wong JY, Velasco A, Rajagopalan P, Pham Q (2003) Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19:1908–1913 Wong JY, Velasco A, Rajagopalan P, Pham Q (2003) Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19:1908–1913
25.
Zurück zum Zitat Kidoaki S, Matsuda T (2008) Microelastic gradient gelatinous gels to induce cellular mechanotaxis. J Biotechnol 133:225–230 Kidoaki S, Matsuda T (2008) Microelastic gradient gelatinous gels to induce cellular mechanotaxis. J Biotechnol 133:225–230
26.
Zurück zum Zitat Tse JR, Engler AJ (2011) Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 6:e15978 Tse JR, Engler AJ (2011) Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 6:e15978
27.
Zurück zum Zitat Marklein RA, Burdick JA (2010) Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matt 6:136–143 Marklein RA, Burdick JA (2010) Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matt 6:136–143
28.
Zurück zum Zitat Khetan S, Burdick JA (2010) Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31:8228–8234 Khetan S, Burdick JA (2010) Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31:8228–8234
29.
Zurück zum Zitat Stowers RS, Allen SC, Suggs LJ (2015) Dynamic phototuing of 3D hydrogel stiffness. Proc Natl Acad Sci U S A 112:1953–1958 Stowers RS, Allen SC, Suggs LJ (2015) Dynamic phototuing of 3D hydrogel stiffness. Proc Natl Acad Sci U S A 112:1953–1958
30.
Zurück zum Zitat Kloxin AM, Benton JA, Anseth KS (2010) In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31:1–8 Kloxin AM, Benton JA, Anseth KS (2010) In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31:1–8
31.
Zurück zum Zitat Johnson PM, Reynolds TB, Stansbury JW, Bowman CN (2005) High throughput kinetic analysis of photopolymer conversion using composition and exposure time gradients. Polymer 46:3300–3306 Johnson PM, Reynolds TB, Stansbury JW, Bowman CN (2005) High throughput kinetic analysis of photopolymer conversion using composition and exposure time gradients. Polymer 46:3300–3306
32.
Zurück zum Zitat Sunyer R, Jin AJ, Nossal R, Sackett DL (2012) Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLoS One 7:e46107 Sunyer R, Jin AJ, Nossal R, Sackett DL (2012) Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLoS One 7:e46107
33.
Zurück zum Zitat García S, Sunyer R, Olivares A, Noailly J, Atencia J, Trepat X (2015) Generation of stable orthogonal graidents of chemical concentration and substrate stiffness in a microfluidic device. Lab Chip 15:2606–2614 García S, Sunyer R, Olivares A, Noailly J, Atencia J, Trepat X (2015) Generation of stable orthogonal graidents of chemical concentration and substrate stiffness in a microfluidic device. Lab Chip 15:2606–2614
34.
Zurück zum Zitat Kloxin AM, Tibbitt MW, Kasko AM, Fairbairn JA, Anseth KS (2010) Tunable hydrogels for external manipulation of cellular microenvironments through controlled photodegradation. Adv Mater 22:61–66 Kloxin AM, Tibbitt MW, Kasko AM, Fairbairn JA, Anseth KS (2010) Tunable hydrogels for external manipulation of cellular microenvironments through controlled photodegradation. Adv Mater 22:61–66
35.
Zurück zum Zitat Tong X, Jiang J, Zhu D, Yang F (2016) Hydrogels with dual gradients of mechanical and biochemical cues for deciphering cell-niche interactions. ACS Biomater Sci Eng 2:845–852 Tong X, Jiang J, Zhu D, Yang F (2016) Hydrogels with dual gradients of mechanical and biochemical cues for deciphering cell-niche interactions. ACS Biomater Sci Eng 2:845–852
36.
Zurück zum Zitat Yanagawa F, Mizutani T, Sugiura S, Takagi T, Sumaru K, Kanamori T (2015) Partially photodegradable hybrid hydrogels with elasticity tunable by light irradiation. Colloid Surf B 126:575–579 Yanagawa F, Mizutani T, Sugiura S, Takagi T, Sumaru K, Kanamori T (2015) Partially photodegradable hybrid hydrogels with elasticity tunable by light irradiation. Colloid Surf B 126:575–579
37.
Zurück zum Zitat Kawano T, Kidoaki S (2011) Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels. Biomaterials 32:2725–2733 Kawano T, Kidoaki S (2011) Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels. Biomaterials 32:2725–2733
38.
Zurück zum Zitat Mosiewicz KA, Kolb L, van der Vlies AJ, Lutolf MP (2014) Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols. Biomater Sci 2:1640–1651 Mosiewicz KA, Kolb L, van der Vlies AJ, Lutolf MP (2014) Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols. Biomater Sci 2:1640–1651
39.
Zurück zum Zitat Frey MT, Wang Y-L (2009) A photo-modulatable material for probing cellular responses to substrate rigidity. Soft Matt 5:1918–1924 Frey MT, Wang Y-L (2009) A photo-modulatable material for probing cellular responses to substrate rigidity. Soft Matt 5:1918–1924
40.
Zurück zum Zitat Wang P-Y, Tsai W-B, Voelcker NH (2012) Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients. Acta Biomater 8:519–530 Wang P-Y, Tsai W-B, Voelcker NH (2012) Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients. Acta Biomater 8:519–530
41.
Zurück zum Zitat Gray DS, Tien J, Chen CS (2003) Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus. J Biomed Mater Res A 66:605–614 Gray DS, Tien J, Chen CS (2003) Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus. J Biomed Mater Res A 66:605–614
42.
Zurück zum Zitat Choi YS, Vincent LG, Lee AR, Kretchmer KC, Chirasatitsin S, Dobke MK, Engler AJ (2012) The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices. Biomaterials 33:6943–6951 Choi YS, Vincent LG, Lee AR, Kretchmer KC, Chirasatitsin S, Dobke MK, Engler AJ (2012) The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices. Biomaterials 33:6943–6951
43.
Zurück zum Zitat Cheung YK, Azeloglu EU, Shiovitz DA, Costa KD, Seliktar D, Sia SK (2009) Microscale control of stiffness in a cell-adhesive substrate using microfluidics-based lithography. Angew Chem Int Ed 48:7188–7192 Cheung YK, Azeloglu EU, Shiovitz DA, Costa KD, Seliktar D, Sia SK (2009) Microscale control of stiffness in a cell-adhesive substrate using microfluidics-based lithography. Angew Chem Int Ed 48:7188–7192
44.
Zurück zum Zitat Shu Y, Chan HN, Guan D, Wu H, Ma L (2017) A simple fabricated thickness-based stiffness gradient for cell studies. Sci Bull 62:222–228 Shu Y, Chan HN, Guan D, Wu H, Ma L (2017) A simple fabricated thickness-based stiffness gradient for cell studies. Sci Bull 62:222–228
45.
Zurück zum Zitat Kuo C-HR, Xian J, Brenton JD, Franze K, Sivaniah E (2012) Complex stiffness gradient substrates for studying mechanotatic cell migration. Adv Mater 24:6059–6064 Kuo C-HR, Xian J, Brenton JD, Franze K, Sivaniah E (2012) Complex stiffness gradient substrates for studying mechanotatic cell migration. Adv Mater 24:6059–6064
46.
Zurück zum Zitat Chao PG, Sheng S-C, Chang W-R (2014) Micro-composite substrates for the study of cell-matrix mechanical interactions. J Mech Behav Biomed Mater 38:232–241 Chao PG, Sheng S-C, Chang W-R (2014) Micro-composite substrates for the study of cell-matrix mechanical interactions. J Mech Behav Biomed Mater 38:232–241
47.
Zurück zum Zitat Kim TH, An DB, Oh SH, Kang MK, Song HH, Lee JH (2015) Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing-thawing method to investigate stem cell differentiation behaviors. Biomaterials 40:51–60 Kim TH, An DB, Oh SH, Kang MK, Song HH, Lee JH (2015) Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing-thawing method to investigate stem cell differentiation behaviors. Biomaterials 40:51–60
48.
Zurück zum Zitat Hopp I, Michelmore A, Smith LE, Robinson DE, Bachhuka A, Mierczynska A, Vasilev K (2013) The influence of substrate stiffness gradients on primary human dermal fibroblasts. Biomaterials 34:5070–5077 Hopp I, Michelmore A, Smith LE, Robinson DE, Bachhuka A, Mierczynska A, Vasilev K (2013) The influence of substrate stiffness gradients on primary human dermal fibroblasts. Biomaterials 34:5070–5077
49.
Zurück zum Zitat Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. In: Current protocols in cell biology. John Wiley & Sons, Inc: 1–16 Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. In: Current protocols in cell biology. John Wiley & Sons, Inc: 1–16
50.
Zurück zum Zitat Lakins JN, Chin AR, Weaver VM (2012) Exploring the link between human embryonic stem cell organization and fate using tension-calibrated extracellular matrix functionalized polyacrylamide gels. In: Mace KA, Braun KM (eds) Progenitor cells, vol 916. Methods in molecular biology. Humana Press, Totawa, pp 317–350 Lakins JN, Chin AR, Weaver VM (2012) Exploring the link between human embryonic stem cell organization and fate using tension-calibrated extracellular matrix functionalized polyacrylamide gels. In: Mace KA, Braun KM (eds) Progenitor cells, vol 916. Methods in molecular biology. Humana Press, Totawa, pp 317–350
51.
Zurück zum Zitat Lee D, Rahman MM, Zhou Y, Ryu S (2015) Three-dimensional confocal microscopy indentation method for hydrogel elasticity measurement. Langmuir 31:9684–9693 Lee D, Rahman MM, Zhou Y, Ryu S (2015) Three-dimensional confocal microscopy indentation method for hydrogel elasticity measurement. Langmuir 31:9684–9693
52.
Zurück zum Zitat Lee D, Ryu S (2017) A validation study of the repeatability and accuracy of atomic force microscopy indentation using polyacrylamide gels and colloidal probes. J Biomech Eng 139:044502 Lee D, Ryu S (2017) A validation study of the repeatability and accuracy of atomic force microscopy indentation using polyacrylamide gels and colloidal probes. J Biomech Eng 139:044502
53.
Zurück zum Zitat Graham PJ, Farhangi MM, Dolatabadi A (2012) Dynamics of droplet coalescence in response to increasing hydrophobicity. Phys Fluids 24:112105 Graham PJ, Farhangi MM, Dolatabadi A (2012) Dynamics of droplet coalescence in response to increasing hydrophobicity. Phys Fluids 24:112105
54.
Zurück zum Zitat Hancock MJ, Yanagawa F, Jang Y-H, He J, Kachouie NN, Kaji H, Khademhosseini A (2012) Designer hydrophilic regions regulate droplet shape for controlled surface patterning and 3D microgel synthesis. Small 8:393–403 Hancock MJ, Yanagawa F, Jang Y-H, He J, Kachouie NN, Kaji H, Khademhosseini A (2012) Designer hydrophilic regions regulate droplet shape for controlled surface patterning and 3D microgel synthesis. Small 8:393–403
55.
Zurück zum Zitat Hermanowicz P, Sarna M, Burda K, Gabryś H (2014) AtomicJ: an open source software for analysis of force curves. Rev Sci Instrum 85:063703 Hermanowicz P, Sarna M, Burda K, Gabryś H (2014) AtomicJ: an open source software for analysis of force curves. Rev Sci Instrum 85:063703
56.
Zurück zum Zitat Crank J (1975) The mathematics of diffusion. 2nd edn. Oxford University Press, Oxford, UK Crank J (1975) The mathematics of diffusion. 2nd edn. Oxford University Press, Oxford, UK
57.
Zurück zum Zitat Carey AE, Wheatcraft SW, Glass RJ, O'Rourke JP (1995) Non-Fickian ionic diffusion across high-concentration gradient. Water Resour Res 31:2213–2218 Carey AE, Wheatcraft SW, Glass RJ, O'Rourke JP (1995) Non-Fickian ionic diffusion across high-concentration gradient. Water Resour Res 31:2213–2218
58.
Zurück zum Zitat Küntz M, Lavallée P (2004) Anomalous diffusion is the rule in concentration-dependent diffusion processes. J Phys D Appl Phys 37:L5–L8 Küntz M, Lavallée P (2004) Anomalous diffusion is the rule in concentration-dependent diffusion processes. J Phys D Appl Phys 37:L5–L8
59.
Zurück zum Zitat Wu Z, Nguyen N-T, Huang X (2004) Nonlinear diffusive mixing in microchannels: theory and experiments. J Micromech Microeng 14:604–611 Wu Z, Nguyen N-T, Huang X (2004) Nonlinear diffusive mixing in microchannels: theory and experiments. J Micromech Microeng 14:604–611
60.
Zurück zum Zitat Chen J, Kim HD, Kim KC (2013) Measurement of dissolved oxygen diffusion coefficient in a microchannel using UV-LED induced fluorescent method. Microfluid Nanofluid 14:541–550 Chen J, Kim HD, Kim KC (2013) Measurement of dissolved oxygen diffusion coefficient in a microchannel using UV-LED induced fluorescent method. Microfluid Nanofluid 14:541–550
61.
Zurück zum Zitat Jimenez M, Dietrich N, Cockx A, Hébrard G (2013) Experimental study of O2 diffusion coefficient measurement at a planar gas-liquid interface by planar laser-induced fluorescence with inhibition. AICHE J 59:325–333 Jimenez M, Dietrich N, Cockx A, Hébrard G (2013) Experimental study of O2 diffusion coefficient measurement at a planar gas-liquid interface by planar laser-induced fluorescence with inhibition. AICHE J 59:325–333
62.
Zurück zum Zitat Jimenez M, Dietrich N, Grace JR, Hébrard G (2014) Oxgen mass transfer and hydrodynamic behaviour in wastewater: determination of local impact of surfactants by visualization techniques. Water Res 58:111–121 Jimenez M, Dietrich N, Grace JR, Hébrard G (2014) Oxgen mass transfer and hydrodynamic behaviour in wastewater: determination of local impact of surfactants by visualization techniques. Water Res 58:111–121
63.
Zurück zum Zitat Roht YL, Auradou H, Hulin J-P, Salin D, Chertcoff R, Ippolito I (2015) Time dependence and local structure of tracer dispersion in oscillating liquid hele-Shaw flows. Phys Fluids 27:103602 Roht YL, Auradou H, Hulin J-P, Salin D, Chertcoff R, Ippolito I (2015) Time dependence and local structure of tracer dispersion in oscillating liquid hele-Shaw flows. Phys Fluids 27:103602
64.
Zurück zum Zitat Xu F, Jimenez M, Dietrich N, Hébrard G (2017) Fast determination of gas-liquid diffusion coefficient by an innovative double approach. Chem Eng Sci 170:68–76 Xu F, Jimenez M, Dietrich N, Hébrard G (2017) Fast determination of gas-liquid diffusion coefficient by an innovative double approach. Chem Eng Sci 170:68–76
65.
Zurück zum Zitat Long R, Hall MS, Wu M, Hui C-Y (2011) Effects of gel thickness on microscopic indentation measurements of gel modulus. Biophys J 101:643–650 Long R, Hall MS, Wu M, Hui C-Y (2011) Effects of gel thickness on microscopic indentation measurements of gel modulus. Biophys J 101:643–650
66.
Zurück zum Zitat Calvet D, Wong JY, Giasson S (2004) Rheological monitoring of polyacrylamide gelation: importance of cross-link density and temperature. Macromolecules 37:7762–7771 Calvet D, Wong JY, Giasson S (2004) Rheological monitoring of polyacrylamide gelation: importance of cross-link density and temperature. Macromolecules 37:7762–7771
67.
Zurück zum Zitat Buxboim A, Rajagopalan K, Brown AEX, Discher DE (2010) How deeply cells feel: methods for thin gels. J Phys Condens Matter 22:194116 Buxboim A, Rajagopalan K, Brown AEX, Discher DE (2010) How deeply cells feel: methods for thin gels. J Phys Condens Matter 22:194116
68.
Zurück zum Zitat Markert CD, Guo X, Skardal A, Wang Z, haradwaj S, Zhang Y, Bonin K, Guthold M (2013) Characterizaing the micro-scale elastic modulus of hydrogels for use in regenerative medicine. J Mech Behav Biomed Mater 27:115–127 Markert CD, Guo X, Skardal A, Wang Z, haradwaj S, Zhang Y, Bonin K, Guthold M (2013) Characterizaing the micro-scale elastic modulus of hydrogels for use in regenerative medicine. J Mech Behav Biomed Mater 27:115–127
69.
Zurück zum Zitat Abidine Y, Laurent VM, Michel R, Duperray A, Palade LI, Verdier C (2015) Physical properties of polyacrylamide gels probed by AFM and rheology. Eur Phys Lett 109:38003 Abidine Y, Laurent VM, Michel R, Duperray A, Palade LI, Verdier C (2015) Physical properties of polyacrylamide gels probed by AFM and rheology. Eur Phys Lett 109:38003
70.
Zurück zum Zitat Boudou T, Ohayon J, Picart C, Tracqui P (2006) An extended relationship for the characterization of Young's modulus and Poisson's ratio of tunable polyacrylamide gels. Biorheology 43:721–728 Boudou T, Ohayon J, Picart C, Tracqui P (2006) An extended relationship for the characterization of Young's modulus and Poisson's ratio of tunable polyacrylamide gels. Biorheology 43:721–728
71.
Zurück zum Zitat Damljanovic V, Lagerholm BC, Jacobson K (2005) Bulk and micropatterned conjugation of extracellular matrix proteins to characterized polyacrylamide substrates for cell mechanotransduction assays. Biotechniques 39:847–851 Damljanovic V, Lagerholm BC, Jacobson K (2005) Bulk and micropatterned conjugation of extracellular matrix proteins to characterized polyacrylamide substrates for cell mechanotransduction assays. Biotechniques 39:847–851
72.
Zurück zum Zitat Takigawa T, Morino Y, Urayama K, Masuda T (1996) Poisson's ratio of polyacrylamide (PAAm) gels. Polym Gel Netw 4:1–5 Takigawa T, Morino Y, Urayama K, Masuda T (1996) Poisson's ratio of polyacrylamide (PAAm) gels. Polym Gel Netw 4:1–5
73.
Zurück zum Zitat Geissler E, Hecht AM (1980) The Poisson ratio in polymer gels. Macromolecules 13:1276–1280 Geissler E, Hecht AM (1980) The Poisson ratio in polymer gels. Macromolecules 13:1276–1280
74.
Zurück zum Zitat Kalcioglu ZI, Mahmoodian R, Hu Y, Suo Z, Van Vliet KJ (2012) From macro- to microscale poroelastic characterization of polymeric hydrogels via indentation. Soft Matt 8:3393–3398 Kalcioglu ZI, Mahmoodian R, Hu Y, Suo Z, Van Vliet KJ (2012) From macro- to microscale poroelastic characterization of polymeric hydrogels via indentation. Soft Matt 8:3393–3398
75.
Zurück zum Zitat Geissler E, Hecht AM (1981) The Poisson ratio in polymer gels. 2. Macromolecules 14:185–188 Geissler E, Hecht AM (1981) The Poisson ratio in polymer gels. 2. Macromolecules 14:185–188
Metadaten
Titel
Fabrication of Hydrogels with a Stiffness Gradient Using Limited Mixing in the Hele-Shaw Geometry
verfasst von
D. Lee
K. Golden
Md. M. Rahman
A. Moran
B. Gonzalez
S. Ryu
Publikationsdatum
10.07.2018
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 9/2019
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-018-0416-1

Weitere Artikel der Ausgabe 9/2019

Experimental Mechanics 9/2019 Zur Ausgabe

EditorialNotes

Editorial Preface

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.