Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 5/2018

06.03.2018 | Original Article

Convolution neural networks for real-time needle detection and localization in 2D ultrasound

verfasst von: Cosmas Mwikirize, John L. Nosher, Ilker Hacihaliloglu

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

We propose a framework for automatic and accurate detection of steeply inserted needles in 2D ultrasound data using convolution neural networks. We demonstrate its application in needle trajectory estimation and tip localization.

Methods

Our approach consists of a unified network, comprising a fully convolutional network (FCN) and a fast region-based convolutional neural network (R-CNN). The FCN proposes candidate regions, which are then fed to a fast R-CNN for finer needle detection. We leverage a transfer learning paradigm, where the network weights are initialized by training with non-medical images, and fine-tuned with ex vivo ultrasound scans collected during insertion of a 17G epidural needle into freshly excised porcine and bovine tissue at depth settings up to 9 cm and \(40^{\circ }\)\(75^{\circ }\) insertion angles. Needle detection results are used to accurately estimate needle trajectory from intensity invariant needle features and perform needle tip localization from an intensity search along the needle trajectory.

Results

Our needle detection model was trained and validated on 2500 ex vivo ultrasound scans. The detection system has a frame rate of 25 fps on a GPU and achieves 99.6% precision, 99.78% recall rate and an \({F}_{1}\) score of 0.99. Validation for needle localization was performed on 400 scans collected using a different imaging platform, over a bovine/porcine lumbosacral spine phantom. Shaft localization error of \(0.82^{\circ }\pm 0.4^{\circ }\), tip localization error of \(0.23\pm 0.05\) mm, and a total processing time of 0.58 s were achieved.

Conclusion

The proposed method is fully automatic and provides robust needle localization results in challenging scanning conditions. The accurate and robust results coupled with real-time detection and sub-second total processing make the proposed method promising in applications for needle detection and localization during challenging minimally invasive ultrasound-guided procedures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Moore J, Clarke C, Bainbridge D, Wedlake C, Wiles A, Pace D, Peters T (2009) Image guidance for spinal facet injections using tracked ultrasound. Med Image Comput Comput Assist Interv 12(Pt 1):516–523PubMed Moore J, Clarke C, Bainbridge D, Wedlake C, Wiles A, Pace D, Peters T (2009) Image guidance for spinal facet injections using tracked ultrasound. Med Image Comput Comput Assist Interv 12(Pt 1):516–523PubMed
2.
Zurück zum Zitat Xia W, West S, Finlay M, Mari J, Ourselin S, David A, Desjardins A (2017) Looking beyond the imaging plane: 3D needle tracking with a linear array ultrasound probe. Sci Rep 7(1):3674CrossRefPubMedPubMedCentral Xia W, West S, Finlay M, Mari J, Ourselin S, David A, Desjardins A (2017) Looking beyond the imaging plane: 3D needle tracking with a linear array ultrasound probe. Sci Rep 7(1):3674CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Ayvali E, Desai J (2014) Optical flow-based tracking of needles and needle-tip localization using circular hough transform in ultrasound images. Ann Biomed Eng 43(8):1828–1840CrossRefPubMedPubMedCentral Ayvali E, Desai J (2014) Optical flow-based tracking of needles and needle-tip localization using circular hough transform in ultrasound images. Ann Biomed Eng 43(8):1828–1840CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Barva M, Uhercik M, Mari JM, Kybic J, Duhamel JR, Liebgott H, Hlavac V, Cachard C (2008) Parallel integral projection transform for straight electrode localization in 3-D ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1559–1569CrossRefPubMed Barva M, Uhercik M, Mari JM, Kybic J, Duhamel JR, Liebgott H, Hlavac V, Cachard C (2008) Parallel integral projection transform for straight electrode localization in 3-D ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1559–1569CrossRefPubMed
5.
Zurück zum Zitat Mathiassen K, Dall’Alba D, Muradore R, Fiorini P, Elle O (2017) Robust real-time needle tracking in 2-D ultrasound images using statistical filtering. IEEE Trans Control Syst Technol 25(3):966–978CrossRef Mathiassen K, Dall’Alba D, Muradore R, Fiorini P, Elle O (2017) Robust real-time needle tracking in 2-D ultrasound images using statistical filtering. IEEE Trans Control Syst Technol 25(3):966–978CrossRef
6.
Zurück zum Zitat Beigi P, Rohling R, Salcudean S, Ng G (2017) CASPER: computer-aided segmentation of imperceptible motion-a learning-based tracking of an invisible needle in ultrasound. IJCARS 12(11):1857–1866 Beigi P, Rohling R, Salcudean S, Ng G (2017) CASPER: computer-aided segmentation of imperceptible motion-a learning-based tracking of an invisible needle in ultrasound. IJCARS 12(11):1857–1866
7.
Zurück zum Zitat Hatt CR, Ng G, Parthasarathy V (2015) Enhanced needle localization in ultrasound using beam steering and learning-based segmentation. Comput Med Imaging Graph 41:46–54CrossRefPubMed Hatt CR, Ng G, Parthasarathy V (2015) Enhanced needle localization in ultrasound using beam steering and learning-based segmentation. Comput Med Imaging Graph 41:46–54CrossRefPubMed
8.
Zurück zum Zitat Mwikirize C, Nosher JL, Hacihaliloglu I (2018) Signal attenuation maps for needle enhancement and localization in 2D ultrasound. Int J CARS 13(3):363–374CrossRef Mwikirize C, Nosher JL, Hacihaliloglu I (2018) Signal attenuation maps for needle enhancement and localization in 2D ultrasound. Int J CARS 13(3):363–374CrossRef
9.
Zurück zum Zitat Hacihaliloglu I, Beigi P, Ng G, Rohling RN, Salcudean S, Abolmaesumi P (2015) Projection-based phase features for localization of a needle tip in 2D curvilinear ultrasound. In: Medical image computing and computer-assisted intervention. Lecture notes in computer science, vol 9349. Springer, pp 347–54 Hacihaliloglu I, Beigi P, Ng G, Rohling RN, Salcudean S, Abolmaesumi P (2015) Projection-based phase features for localization of a needle tip in 2D curvilinear ultrasound. In: Medical image computing and computer-assisted intervention. Lecture notes in computer science, vol 9349. Springer, pp 347–54
10.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi B, Setio A, Ciompi F, Ghafoorian M, van der Laak J, van Ginneken B, Snchez C (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed Litjens G, Kooi T, Bejnordi B, Setio A, Ciompi F, Ghafoorian M, van der Laak J, van Ginneken B, Snchez C (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed
11.
Zurück zum Zitat Pourtaherian A, Zanjani FG, Zinger S, Mihajlovic N, Ng G, Korsten H, de With P (2017) Improving needle detection in 3D ultrasound using orthogonal-plane convolutional networks. In: Medical image computing and computer-assisted intervention. Lecture notes in computer science, vol 10434. Springer, pp 610–618 Pourtaherian A, Zanjani FG, Zinger S, Mihajlovic N, Ng G, Korsten H, de With P (2017) Improving needle detection in 3D ultrasound using orthogonal-plane convolutional networks. In: Medical image computing and computer-assisted intervention. Lecture notes in computer science, vol 10434. Springer, pp 610–618
12.
Zurück zum Zitat Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149CrossRefPubMed Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149CrossRefPubMed
13.
Zurück zum Zitat Girshick R (2015) Fast R-CNN. In: Proceedings of IEEE international conference on computer vision, pp 1440–148 Girshick R (2015) Fast R-CNN. In: Proceedings of IEEE international conference on computer vision, pp 1440–148
14.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton G (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90CrossRef Krizhevsky A, Sutskever I, Hinton G (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90CrossRef
15.
Zurück zum Zitat Simonyan K, Zisserman A (2015) Very deep convolutional network for large-scale image recognition. In: Proceedings of international conference on learning representations Simonyan K, Zisserman A (2015) Very deep convolutional network for large-scale image recognition. In: Proceedings of international conference on learning representations
16.
Zurück zum Zitat Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional neural networks. In: Proceedings of 13th European conference on computer vision, vol 81833 Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional neural networks. In: Proceedings of 13th European conference on computer vision, vol 81833
17.
Zurück zum Zitat Krizhevsky A (2009) Learning multiple layers of features from tiny images. CIFAR10 dataset Krizhevsky A (2009) Learning multiple layers of features from tiny images. CIFAR10 dataset
18.
Zurück zum Zitat Huynh B, Li H, Giger M (2016) Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging 3(3):034501CrossRef Huynh B, Li H, Giger M (2016) Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging 3(3):034501CrossRef
19.
Zurück zum Zitat Torr PHS, Zisserman A (2000) MLESAC: a new robust estimator with application to estimating image geometry. J Comput Vis Image Underst 78(1):138–156CrossRef Torr PHS, Zisserman A (2000) MLESAC: a new robust estimator with application to estimating image geometry. J Comput Vis Image Underst 78(1):138–156CrossRef
Metadaten
Titel
Convolution neural networks for real-time needle detection and localization in 2D ultrasound
verfasst von
Cosmas Mwikirize
John L. Nosher
Ilker Hacihaliloglu
Publikationsdatum
06.03.2018
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 5/2018
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1721-y

Weitere Artikel der Ausgabe 5/2018

International Journal of Computer Assisted Radiology and Surgery 5/2018 Zur Ausgabe

Premium Partner