Skip to main content
Erschienen in: Cognitive Neurodynamics 3/2009

01.09.2009 | Research Article

New mechanics of traumatic brain injury

verfasst von: Vladimir G. Ivancevic

Erschienen in: Cognitive Neurodynamics | Ausgabe 3/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton–Euler dynamics of brain’s micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain’s rapid discontinuous deformations: translational dislocations and rotational disclinations. Brain’s dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
A closed injury occurs when the head suddenly and violently hits an object but the object does not break through the skull.
 
2
A penetrating injury occurs when an object pierces the skull and enters brain tissue.
 
3
SI is a vector quantity indicating the direction and magnitude of power flow inside a dynamically loaded structure.
 
4
The mechanical SE(3)-jolt concept is based on the mathematical concept of higher-order tangency (rigorously defined in terms of jet bundles of the head’s configuration manifold) (Ivancevic and Ivancevic 2006c, e), as follows: When something hits the human head, or the head hits some external body, we have a collision. This is naturally described by the SE(3)-momentum, which is a nonlinear coupling of three linear Newtonian momenta with three angular Eulerian momenta. The tangent to the SE(3)-momentum, defined by the (absolute) time derivative, is the SE(3)-force. The second-order tangency is given by the SE(3)-jolt, which is the tangent to the SE(3)-force, also defined by the time derivative.
 
5
Recall that the cross product \({\mathbf{u}\times \mathbf{v}}\) of two vectors \({\mathbf{u}} \) and \({\mathbf{v}}\) equals \({\mathbf{u}\times \mathbf{v}}=uv\sin\theta {\mathbf{n}},\) where θ is the angle between \({\mathbf{u}}\) and \({\mathbf{v}},\) while \( {\mathbf{n}}\) is a unit vector perpendicular to the plane of \({\mathbf{u}}\) and \( {\mathbf{v}}\) such that \({\mathbf{u}}\) and \({\mathbf{v}}\) form a right-handed system.
 
6
In reality, mass and inertia matrices (M, I) are not diagonal but rather full 3 × 3 positive-definite symmetric matrices with coupled mass- and inertia-products. Even more realistic, fully-coupled mass–inertial properties of a brain immersed in (incompressible, irrotational and inviscid) cerebrospinal fluid are defined by the single non-diagonal 6 × 6 positive-definite symmetric mass–inertia matrix \( {\mathcal{M}}_{SE(3)},\) the so-called material metric tensor of the SE(3)-group, which has all nonzero mass–inertia coupling products. In other words, the 6 × 6 matrix \({\mathcal{M}}_{SE(3)}\) contains: (i) brain’s own mass plus the added mass matrix associated with the fluid, (ii) brain’s own inertia plus the added inertia matrix associated with the potential flow of the fluid, and (iii) all the coupling terms between linear and angular momenta. However, for simplicity, in this paper we shall consider only the simple case of two separate diagonal 3 × 3 matrices (\({\mathbf{M,I}}).\)
 
7
In reality, \(\varvec{\omega }\) is a 3 × 3 attitude matrix (see Appendix). However, for simplicity, we will stick to the (mostly) symmetrical translation-rotation vector form.
 
8
In a fully-coupled Newton–Euler brain dynamics, instead of Eq. 4 we would have brain’s kinetic energy defined by the inner product:
$$ E_{k}=\frac{1}{2}\left[\frac{{\mathbf{p}}}{\varvec{\pi}} {\mathcal{M}}_{SE(3)}\frac{{\mathbf{p}}}{\varvec{\pi}}\right]. $$
 
9
Note that the derivative of the cross-product of two vectors follows the standard calculus product-rule: \(\frac{\text{d}}{{\text{d}}t}({\mathbf{u\times v}})={\dot{\mathbf{u}}\times {\mathbf{v}}+{\mathbf{u}}\times {\dot{\mathbf{v}}.}}\)
 
10
In this paragraph the overdots actually denote the absolute Bianchi (covariant) time-derivative (1), so that the jolts retain the proper covector character, which would be lost if ordinary time derivatives are used. However, for the sake of simplicity and wider readability, we stick to the same overdot notation.
 
11
Differential p-forms are totally skew-symmetric covariant tensors, defined using the exterior wedge-product and exterior derivative. The proper definition of exterior derivative d for a p-form β on a smooth manifold M, includes the Poincaré lemma (Ivancevic and Ivancevic 2006c, 2007e): d(dβ) = 0, and validates the general Stokes formula
$$ \int_{\partial M}\beta =\int_{M}d\beta , $$
where M is a p-dimensional manifold with a boundary and ∂M is its (p − 1)-dimensional boundary, while the integrals have appropriate dimensions.
A p-form β is called closed if its exterior derivative is equal to zero,
$$ \text{d}\beta =0. $$
From this condition one can see that the closed form (the kernel of the exterior derivative operator d) is conserved quantity. Therefore, closed p-forms possess certain invariant properties, physically corresponding to the conservation laws.
A p-form β that is an exterior derivative of some (p − 1)-form α,
$$ \beta =\text{d}\alpha , $$
is called exact (the image of the exterior derivative operator d). By Poincaré lemma, exact forms prove to be closed automatically,
$$ \text{d}\beta =\text{d}(\text{d}\alpha )=0. $$
This lemma is the foundation of the de Rham cohomology theory (Ivancevic and Ivancevic 2006c, 2007e).
 
12
One practical application of the proposed model is in design of helmets. Briefly, a ‘hard’ helmet saves the skull but not the brain; alternatively, a ‘soft’ helmet protects the brain from the collision jolt but does not protect the skull. A good helmet is both ‘hard’ and ‘soft’. In other words, if a human head covered with a solid helmet collides with a massive external body, the skull will be protected by the helmet—but the brain will still be shocked by the SE(3)-jolt, and a TBI will be caused. With or without the ‘hard’ helmet, brain’s inertia tensor will be moved and rotated by the external SE(3)-jolt, and this will cause a brain injury, proportional to the jolt-collision with the head. Therefore, while protecting the skull is a necessary condition for protecting the brain, it is not enough. Brain’s inertia tensor needs another kind of protection from the external collision-jolt. Contrastingly, if a human head covered with a ‘soft’ helmet collides with a massive external body, the helmet will dissipate the energy from the collision jolt, but will not necessarily protect the skull. As a result, a proper helmet would have to have both a hard external shell (to protect the skull) and a soft internal part (that will dissipate the energy from the collision jolt by its own destruction, in the same way as a car saves its passengers from the collision jolt by its own destruction). Note that, hypothetically speaking, an ideal shock-absorber is not a classical spring-damper system (with the distance-dependent spring and velocity-dependent damper), but rather a constant-resistance damper.
 
Literatur
Zurück zum Zitat Bayly PV, Cohen TS, Leister EP, Ajo D, Leuthardt EC, Genin GM (2005) Deformation of the human brain induced by mild acceleration. J Neurotrauma 22(8):845–856PubMedCrossRef Bayly PV, Cohen TS, Leister EP, Ajo D, Leuthardt EC, Genin GM (2005) Deformation of the human brain induced by mild acceleration. J Neurotrauma 22(8):845–856PubMedCrossRef
Zurück zum Zitat Beckwith JG, Chu JJ, Greenwald RM (2007) Validation of a noninvasive system for measuring head acceleration for use during boxing competition. J Appl Biomech 23(3):238–244PubMed Beckwith JG, Chu JJ, Greenwald RM (2007) Validation of a noninvasive system for measuring head acceleration for use during boxing competition. J Appl Biomech 23(3):238–244PubMed
Zurück zum Zitat Bilby BA, Eshelby JD (1968) Dislocation and the theory of fracture. In: Liebowitz H (ed) Fracture, an advanced treatise. I, microscopic and macroscopic fundamentals. Academic Press, New York, London, pp 99–182 Bilby BA, Eshelby JD (1968) Dislocation and the theory of fracture. In: Liebowitz H (ed) Fracture, an advanced treatise. I, microscopic and macroscopic fundamentals. Academic Press, New York, London, pp 99–182
Zurück zum Zitat Bledsoe GH, Li G, Levy F (2005) Injury risk in professional boxing. South Med J 98(10):994–998PubMedCrossRef Bledsoe GH, Li G, Levy F (2005) Injury risk in professional boxing. South Med J 98(10):994–998PubMedCrossRef
Zurück zum Zitat Brands DW, Peters GW, Bovendeerd PH (2004) Design and numerical implementation of a 3D non-linear viscoelastic constitutive model for brain tissue during impact. J Biomech 37(1):127–134PubMedCrossRef Brands DW, Peters GW, Bovendeerd PH (2004) Design and numerical implementation of a 3D non-linear viscoelastic constitutive model for brain tissue during impact. J Biomech 37(1):127–134PubMedCrossRef
Zurück zum Zitat Chen Z, Cao J, Cao Y, Zhang Y, Gu F, Zhu G, Hong Z, Wang B, Cichocki A (2008) An empirical EEG analysis in brain death diagnosis for adults. Cogn Neurodyn 2:257–271PubMedCrossRef Chen Z, Cao J, Cao Y, Zhang Y, Gu F, Zhu G, Hong Z, Wang B, Cichocki A (2008) An empirical EEG analysis in brain death diagnosis for adults. Cogn Neurodyn 2:257–271PubMedCrossRef
Zurück zum Zitat Chu CS, Lin MS, Huang HM, Lee MC (1994) Finite element analysis of cerebral contusion. J Biomech 27(2):187–194PubMedCrossRef Chu CS, Lin MS, Huang HM, Lee MC (1994) Finite element analysis of cerebral contusion. J Biomech 27(2):187–194PubMedCrossRef
Zurück zum Zitat Cosserat E, Cosserat F (1898) Sur les equations de la theorie de l‘elasticite. C R Acad Sci Paris 126:1089–1091 Cosserat E, Cosserat F (1898) Sur les equations de la theorie de l‘elasticite. C R Acad Sci Paris 126:1089–1091
Zurück zum Zitat Cosserat E, Cosserat F (1909) Theorie des Corps Deformables. Hermann et Fils, Paris Cosserat E, Cosserat F (1909) Theorie des Corps Deformables. Hermann et Fils, Paris
Zurück zum Zitat Edelen DGB (1980) A four-dimensional formulation of defect dynamics and some of its consequences. Int J Eng Sci 18:1095CrossRef Edelen DGB (1980) A four-dimensional formulation of defect dynamics and some of its consequences. Int J Eng Sci 18:1095CrossRef
Zurück zum Zitat Eringen AC (2002) Nonlocal continuum field theories. Springer, New York Eringen AC (2002) Nonlocal continuum field theories. Springer, New York
Zurück zum Zitat Goldsmith W (2001) The state of head injury biomechanics: past, present and future, part 1. Crit Rev Biomed Eng 29(5/6):441–600PubMed Goldsmith W (2001) The state of head injury biomechanics: past, present and future, part 1. Crit Rev Biomed Eng 29(5/6):441–600PubMed
Zurück zum Zitat Goldsmith W, Monson KL (2005) The state of head injury biomechanics: past, present, and future, part 2: physical experimentation. Crit Rev Biomed Eng 33(2):105–207PubMedCrossRef Goldsmith W, Monson KL (2005) The state of head injury biomechanics: past, present, and future, part 2: physical experimentation. Crit Rev Biomed Eng 33(2):105–207PubMedCrossRef
Zurück zum Zitat Guan Y, Zhang J, Yoganandan N, Pintar FA, Muszynski CA, Gennarelli TA (2006) Automating 3D meshing method for patient-specific modeling. Biomed Sci Instrum 42:199–204PubMed Guan Y, Zhang J, Yoganandan N, Pintar FA, Muszynski CA, Gennarelli TA (2006) Automating 3D meshing method for patient-specific modeling. Biomed Sci Instrum 42:199–204PubMed
Zurück zum Zitat Gutierrez E, Huang Y, Haglid K, Bao F, Hansson HA, Hamberger A, Viano D (2001) A new model for diffuse brain injury by rotational acceleration: I model, gross appearance, and astrocytosis. J Neurotrauma 18(3):247–257PubMedCrossRef Gutierrez E, Huang Y, Haglid K, Bao F, Hansson HA, Hamberger A, Viano D (2001) A new model for diffuse brain injury by rotational acceleration: I model, gross appearance, and astrocytosis. J Neurotrauma 18(3):247–257PubMedCrossRef
Zurück zum Zitat Hoge CW, McGurk D, Thomas DL, Cox AL, Engel CC, Castro CA (2008) Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med 358(5):453–463PubMedCrossRef Hoge CW, McGurk D, Thomas DL, Cox AL, Engel CC, Castro CA (2008) Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med 358(5):453–463PubMedCrossRef
Zurück zum Zitat Hrapko M, van Dommelen JA, Peters GW, Wismans JS (2006) The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheology 43(5):623–636PubMed Hrapko M, van Dommelen JA, Peters GW, Wismans JS (2006) The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheology 43(5):623–636PubMed
Zurück zum Zitat Huang HM, Lee MC, Lee SY, Chiu WT, Pan LC, Chen CT (2000) Finite element analysis of brain contusion: an indirect impact study. Med Biol Eng Comput 38(3):253–259PubMedCrossRef Huang HM, Lee MC, Lee SY, Chiu WT, Pan LC, Chen CT (2000) Finite element analysis of brain contusion: an indirect impact study. Med Biol Eng Comput 38(3):253–259PubMedCrossRef
Zurück zum Zitat Ivancevic V (2004) Symplectic rotational geometry in human biomechanics. SIAM Rev 46(3):455–474CrossRef Ivancevic V (2004) Symplectic rotational geometry in human biomechanics. SIAM Rev 46(3):455–474CrossRef
Zurück zum Zitat Ivancevic V (2006) Lie-Lagrangian model for realistic human bio-dynamics. Int J Hum Rob 3(2):205–218CrossRef Ivancevic V (2006) Lie-Lagrangian model for realistic human bio-dynamics. Int J Hum Rob 3(2):205–218CrossRef
Zurück zum Zitat Ivancevic V, Aidman E (2007) Life-space foam: a medium for motivational and cognitive dynamics. Physica A 382:616–630CrossRef Ivancevic V, Aidman E (2007) Life-space foam: a medium for motivational and cognitive dynamics. Physica A 382:616–630CrossRef
Zurück zum Zitat Ivancevic V, Ivancevic T (2006a) Natural biodynamics. World Scientific, Singapore Ivancevic V, Ivancevic T (2006a) Natural biodynamics. World Scientific, Singapore
Zurück zum Zitat Ivancevic V, Ivancevic T (2006b) Human-like biomechanics. Springer, Dordrecht Ivancevic V, Ivancevic T (2006b) Human-like biomechanics. Springer, Dordrecht
Zurück zum Zitat Ivancevic V, Ivancevic T (2006c) Geometrical dynamics of complex systems: a unified modelling approach to physics, control, biomechanics, neurodynamics and psycho-socio-economical dynamics. Springer, Dordrecht Ivancevic V, Ivancevic T (2006c) Geometrical dynamics of complex systems: a unified modelling approach to physics, control, biomechanics, neurodynamics and psycho-socio-economical dynamics. Springer, Dordrecht
Zurück zum Zitat Ivancevic V, Ivancevic T (2007a) Neuro-fuzzy associative machinery for comprehensive brain and cognition modelling. Springer, Berlin Ivancevic V, Ivancevic T (2007a) Neuro-fuzzy associative machinery for comprehensive brain and cognition modelling. Springer, Berlin
Zurück zum Zitat Ivancevic V, Ivancevic T (2007b) High-dimensional chaotic and attractor systems. Springer, Dordrecht Ivancevic V, Ivancevic T (2007b) High-dimensional chaotic and attractor systems. Springer, Dordrecht
Zurück zum Zitat Ivancevic V, Ivancevic T (2007c) Computational mind: a complex dynamics perspective. Springer, Berlin Ivancevic V, Ivancevic T (2007c) Computational mind: a complex dynamics perspective. Springer, Berlin
Zurück zum Zitat Ivancevic V, Ivancevic T (2007d) Complex dynamics: advanced system dynamics in complex variables. Springer, Dordrecht Ivancevic V, Ivancevic T (2007d) Complex dynamics: advanced system dynamics in complex variables. Springer, Dordrecht
Zurück zum Zitat Ivancevic V, Ivancevic T (2007e) Applied differential geometry: a modern introduction. World Scientific, Singapore Ivancevic V, Ivancevic T (2007e) Applied differential geometry: a modern introduction. World Scientific, Singapore
Zurück zum Zitat Ivancevic V, Ivancevic T (2008) Complex nonlinearity: chaos, phase transitions, topology change and path integrals. Springer, Berlin Ivancevic V, Ivancevic T (2008) Complex nonlinearity: chaos, phase transitions, topology change and path integrals. Springer, Berlin
Zurück zum Zitat Jian G, Xiao-ling L (1995) A physical theory of asymmetric plasticity. Appl Math Mech (Springer) 16(5):493–506CrossRef Jian G, Xiao-ling L (1995) A physical theory of asymmetric plasticity. Appl Math Mech (Springer) 16(5):493–506CrossRef
Zurück zum Zitat Kadic A, Edelen DGB (1983) A Gauge theory of dislocations and disclinations. Springer, New YorkCrossRef Kadic A, Edelen DGB (1983) A Gauge theory of dislocations and disclinations. Springer, New YorkCrossRef
Zurück zum Zitat Krabbel G, Appel H (1995) Development of a finite element model of the human skull. J Neurotrauma 12(4):735–742PubMedCrossRef Krabbel G, Appel H (1995) Development of a finite element model of the human skull. J Neurotrauma 12(4):735–742PubMedCrossRef
Zurück zum Zitat LaPlaca MC, Cullen DK, McLoughlin JJ, Cargill RS (2005) High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. J Biomech 38(5):1093–1105PubMedCrossRef LaPlaca MC, Cullen DK, McLoughlin JJ, Cargill RS (2005) High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. J Biomech 38(5):1093–1105PubMedCrossRef
Zurück zum Zitat Lakes RS (1985) A pathological situation in micropolar elasticity. J Appl Mech 52:234–235CrossRef Lakes RS (1985) A pathological situation in micropolar elasticity. J Appl Mech 52:234–235CrossRef
Zurück zum Zitat Lamb H (1932) Hydrodynamics (6th ed). Dover, New York Lamb H (1932) Hydrodynamics (6th ed). Dover, New York
Zurück zum Zitat Leonard NE (1997) Stability of a bottom-heavy underwater vehicle. Automatica 33(3):331–346CrossRef Leonard NE (1997) Stability of a bottom-heavy underwater vehicle. Automatica 33(3):331–346CrossRef
Zurück zum Zitat Li J, Zhang J, Yoganandan N, Pintar F, Gennarelli T (2007) Regional brain strains and role of falx in lateral impact-induced head rotational acceleration. Biomed Sci Instrum 43:24–29PubMed Li J, Zhang J, Yoganandan N, Pintar F, Gennarelli T (2007) Regional brain strains and role of falx in lateral impact-induced head rotational acceleration. Biomed Sci Instrum 43:24–29PubMed
Zurück zum Zitat Loth F, Yardimci MA, Alperin N (2001) Hydrodynamic modelling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng 123(1):71–79PubMedCrossRef Loth F, Yardimci MA, Alperin N (2001) Hydrodynamic modelling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng 123(1):71–79PubMedCrossRef
Zurück zum Zitat Maier SE, Hardy CJ, Jolesz FA (1994) Brain and cerebrospinal fluid motion: real-time quantification with M_mode MR imaging. Radiology 193(2):477–483PubMed Maier SE, Hardy CJ, Jolesz FA (1994) Brain and cerebrospinal fluid motion: real-time quantification with M_mode MR imaging. Radiology 193(2):477–483PubMed
Zurück zum Zitat Mao H, Zhang L, Yang KH, King AI (2006) Application of a finite element model of the brain to study traumatic brain injury mechanisms in the rat. Stapp Car Crash J 50:583–600PubMed Mao H, Zhang L, Yang KH, King AI (2006) Application of a finite element model of the brain to study traumatic brain injury mechanisms in the rat. Stapp Car Crash J 50:583–600PubMed
Zurück zum Zitat Mason M (2007) Iraq war’s signature wound: brain injury. Discover Magazine (February 23) Mason M (2007) Iraq war’s signature wound: brain injury. Discover Magazine (February 23)
Zurück zum Zitat Mindlin RD (1965) Stress functions for a Cosserat continuum. Int J Solids Struct 1:265–271CrossRef Mindlin RD (1965) Stress functions for a Cosserat continuum. Int J Solids Struct 1:265–271CrossRef
Zurück zum Zitat Misra JC, Chakravarty S (1985) Dynamic response of a head–neck system to an impulsive load. Math Model 6:83–96CrossRef Misra JC, Chakravarty S (1985) Dynamic response of a head–neck system to an impulsive load. Math Model 6:83–96CrossRef
Zurück zum Zitat Morrison B, Cater HL, Benham CD, Sundstrom LE (2006) An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J Neurosci Methods 150(2):192–201PubMedCrossRef Morrison B, Cater HL, Benham CD, Sundstrom LE (2006) An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J Neurosci Methods 150(2):192–201PubMedCrossRef
Zurück zum Zitat NIH (2002) Traumatic brain injury: hope through research. NIH Publication No. 02-2478. National Institute of Health NIH (2002) Traumatic brain injury: hope through research. NIH Publication No. 02-2478. National Institute of Health
Zurück zum Zitat Newman JA, Beusenberg MC, Shewchenko N, Withnall C, Fournier E (2005) Verification of biomechanical methods employed in a comprehensive study of mild traumatic brain injury and the effectiveness of American football helmets. J Biomech 38(7):1469–1481PubMedCrossRef Newman JA, Beusenberg MC, Shewchenko N, Withnall C, Fournier E (2005) Verification of biomechanical methods employed in a comprehensive study of mild traumatic brain injury and the effectiveness of American football helmets. J Biomech 38(7):1469–1481PubMedCrossRef
Zurück zum Zitat Park J, Chung W-K (2005) Geometric integration on Euclidean group with application to articulated multibody systems. IEEE Trans Rob 21(5):850–863CrossRef Park J, Chung W-K (2005) Geometric integration on Euclidean group with application to articulated multibody systems. IEEE Trans Rob 21(5):850–863CrossRef
Zurück zum Zitat Park HC, Lakes RS (1986) Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. J Biomech 19:385–397PubMedCrossRef Park HC, Lakes RS (1986) Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. J Biomech 19:385–397PubMedCrossRef
Zurück zum Zitat Pena A, Pickard JD, Stiller D, Harris NG, Schuhmann MU (2005) Brain tissue biomechanics in cortical contusion injury: a finite element analysis. Acta Neurochir Suppl 95:333–336PubMedCrossRef Pena A, Pickard JD, Stiller D, Harris NG, Schuhmann MU (2005) Brain tissue biomechanics in cortical contusion injury: a finite element analysis. Acta Neurochir Suppl 95:333–336PubMedCrossRef
Zurück zum Zitat Rapp PE (2008) Quantitative characterization of animal behavior following blast exposure. Cogn Neurodyn 1:287–293CrossRef Rapp PE (2008) Quantitative characterization of animal behavior following blast exposure. Cogn Neurodyn 1:287–293CrossRef
Zurück zum Zitat Roth S, Raul JS, Ludes B, Willinger R (2007) Finite element analysis of impact and shaking inflicted to a child. Int J Legal Med 121(3):223–228PubMedCrossRef Roth S, Raul JS, Ludes B, Willinger R (2007) Finite element analysis of impact and shaking inflicted to a child. Int J Legal Med 121(3):223–228PubMedCrossRef
Zurück zum Zitat Runnerstam M, Bao F, Huang Y, Shi J, Gutierrez E, Hamberger A, Hansson HA, Viano D, Haglid K (2001) A new model for diffuse brain injury by rotational acceleration: II. Effects on extracellular glutamate, intracranial pressure, and neuronal apoptosis. J Neurotrauma 18(3):259–273PubMedCrossRef Runnerstam M, Bao F, Huang Y, Shi J, Gutierrez E, Hamberger A, Hansson HA, Viano D, Haglid K (2001) A new model for diffuse brain injury by rotational acceleration: II. Effects on extracellular glutamate, intracranial pressure, and neuronal apoptosis. J Neurotrauma 18(3):259–273PubMedCrossRef
Zurück zum Zitat Sabet AA, Christoforou E, Zatlin B, Genin GM, Bayly PV (2008) Deformation of the human brain induced by mild angular head acceleration. J Biomech 41(2):307–315PubMedCrossRef Sabet AA, Christoforou E, Zatlin B, Genin GM, Bayly PV (2008) Deformation of the human brain induced by mild angular head acceleration. J Biomech 41(2):307–315PubMedCrossRef
Zurück zum Zitat Singh A, Lu Y, Chen C, Kallakuri S, Cavanaugh JM (2006) A new model of traumatic axonal injury to determine the effects of strain and displacement rates. Stapp Car Crash J 50:601–623PubMed Singh A, Lu Y, Chen C, Kallakuri S, Cavanaugh JM (2006) A new model of traumatic axonal injury to determine the effects of strain and displacement rates. Stapp Car Crash J 50:601–623PubMed
Zurück zum Zitat Sokoloff L (2008) The physiological and biochemical bases of functional brain imaging. Cogn Neurodyn 2:1–5PubMedCrossRef Sokoloff L (2008) The physiological and biochemical bases of functional brain imaging. Cogn Neurodyn 2:1–5PubMedCrossRef
Zurück zum Zitat Takahashi T, Kato K, Ishikawa R, Watanabe T, Kubo M, Uzuka, T, Fujii Y, Takahashi H (2007) 3-D finite element analysis and experimental study on brain injury mechanism. In: Proceedings of the 29th annual international conference of the IEEE EMBS, Cité Internationale, Lyon, France, 23–26 August 2007 Takahashi T, Kato K, Ishikawa R, Watanabe T, Kubo M, Uzuka, T, Fujii Y, Takahashi H (2007) 3-D finite element analysis and experimental study on brain injury mechanism. In: Proceedings of the 29th annual international conference of the IEEE EMBS, Cité Internationale, Lyon, France, 23–26 August 2007
Zurück zum Zitat Viano DC, Casson IR, Pellman EJ, Bir CA, Zhang L, Sherman DC, Boitano MA (2005) Concussion in professional football: comparison with boxing head impacts—part 10. Neurosurgery 57(6):1154–1172PubMedCrossRef Viano DC, Casson IR, Pellman EJ, Bir CA, Zhang L, Sherman DC, Boitano MA (2005) Concussion in professional football: comparison with boxing head impacts—part 10. Neurosurgery 57(6):1154–1172PubMedCrossRef
Zurück zum Zitat Viano DC, Casson IR, Pellman EJ (2007) Concussion in professional football: biomechanics of the struck player—part 14. Neurosurgery 61(2):313–327PubMedCrossRef Viano DC, Casson IR, Pellman EJ (2007) Concussion in professional football: biomechanics of the struck player—part 14. Neurosurgery 61(2):313–327PubMedCrossRef
Zurück zum Zitat Voo K, Kumaresan S, Pintar FA, Yoganandan N, Sances A Jr (2006) Finite-element models of the human head. Med Biol Eng Comput 34(5):375–381CrossRef Voo K, Kumaresan S, Pintar FA, Yoganandan N, Sances A Jr (2006) Finite-element models of the human head. Med Biol Eng Comput 34(5):375–381CrossRef
Zurück zum Zitat Wolfson DR, McNally DS, Clifford MJ, Vloeberghs M (2005) Rigid-body modelling of shaken baby syndrome. Proc Inst Mech Eng 219(1):63–70 Wolfson DR, McNally DS, Clifford MJ, Vloeberghs M (2005) Rigid-body modelling of shaken baby syndrome. Proc Inst Mech Eng 219(1):63–70
Zurück zum Zitat Yang JFC, Lakes RS (1981) Transient study of couple stress in compact bone: torsion. J Biomech Eng 103:275–279PubMedCrossRef Yang JFC, Lakes RS (1981) Transient study of couple stress in compact bone: torsion. J Biomech Eng 103:275–279PubMedCrossRef
Zurück zum Zitat Yang JFC, Lakes RS (1982) Experimental study of micropolar and couple-stress elasticity in bone in bending. J Biomech 15:91–98PubMedCrossRef Yang JFC, Lakes RS (1982) Experimental study of micropolar and couple-stress elasticity in bone in bending. J Biomech 15:91–98PubMedCrossRef
Zurück zum Zitat Yang W, Tang J-C, Ing Y-S, Ma C-C (2001) Transient dislocation emission from a crack tip. J Mech Phys Solids 49(10):2431–2453CrossRef Yang W, Tang J-C, Ing Y-S, Ma C-C (2001) Transient dislocation emission from a crack tip. J Mech Phys Solids 49(10):2431–2453CrossRef
Zurück zum Zitat Yoganandan N, Pintar FA, Zhang J, Stemper BD, Philippens M (2008) Upper neck forces and moments and cranial angular accelerations in lateral impact. Ann Biomed Eng 36(3):406–414PubMedCrossRef Yoganandan N, Pintar FA, Zhang J, Stemper BD, Philippens M (2008) Upper neck forces and moments and cranial angular accelerations in lateral impact. Ann Biomed Eng 36(3):406–414PubMedCrossRef
Zurück zum Zitat Zhang L, Yang KH, King AI (2001) Comparison of brain responses between frontal and lateral impacts by finite element modeling. J Neurotrauma 18(1):21–30PubMedCrossRef Zhang L, Yang KH, King AI (2001) Comparison of brain responses between frontal and lateral impacts by finite element modeling. J Neurotrauma 18(1):21–30PubMedCrossRef
Zurück zum Zitat Zhang L, Yang KH, King AI (2004) A proposed injury threshold for mild traumatic brain injury. J Biomech Eng 126(2):226–236PubMedCrossRef Zhang L, Yang KH, King AI (2004) A proposed injury threshold for mild traumatic brain injury. J Biomech Eng 126(2):226–236PubMedCrossRef
Zurück zum Zitat Zhang J, Yoganandan N, Pintar FA, Gennarelli TA (2006) Role of translational and rotational accelerations on brain strain in lateral head impact. Biomed Sci Instrum 42:501–506PubMed Zhang J, Yoganandan N, Pintar FA, Gennarelli TA (2006) Role of translational and rotational accelerations on brain strain in lateral head impact. Biomed Sci Instrum 42:501–506PubMed
Zurück zum Zitat Zong Z, Lee HP, Lu C (2006) A three-dimensional human head finite element model and power flow in a human head subject to impact loading. J Biomech 39(2):284–292PubMedCrossRef Zong Z, Lee HP, Lu C (2006) A three-dimensional human head finite element model and power flow in a human head subject to impact loading. J Biomech 39(2):284–292PubMedCrossRef
Zurück zum Zitat Zou H, Schmiedeler JP, Hardy WN (2007) Separating brain motion into rigid body displacement and deformation under low-severity impacts. J Biomech 40(6):1183–1191PubMedCrossRef Zou H, Schmiedeler JP, Hardy WN (2007) Separating brain motion into rigid body displacement and deformation under low-severity impacts. J Biomech 40(6):1183–1191PubMedCrossRef
Metadaten
Titel
New mechanics of traumatic brain injury
verfasst von
Vladimir G. Ivancevic
Publikationsdatum
01.09.2009
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 3/2009
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-008-9070-0

Weitere Artikel der Ausgabe 3/2009

Cognitive Neurodynamics 3/2009 Zur Ausgabe