Skip to main content
Erschienen in: Cognitive Neurodynamics 2/2017

15.02.2017 | Research Article

Navigation-synchronized multimodal control wheelchair from brain to alternative assistive technologies for persons with severe disabilities

verfasst von: Dilok Puanhvuan, Sarawin Khemmachotikun, Pongsakorn Wechakarn, Boonyanuch Wijarn, Yodchanan Wongsawat

Erschienen in: Cognitive Neurodynamics | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Currently, electric wheelchairs are commonly used to improve mobility in disabled people. In severe cases, the user is unable to control the wheelchair by themselves because his/her motor functions are disabled. To restore mobility function, a brain-controlled wheelchair (BCW) would be a promising system that would allow the patient to control the wheelchair by their thoughts. P300 is a reliable brain electrical signal, a component of visual event-related potentials (ERPs), that could be used for interpreting user commands. This research aimed to propose a prototype BCW to allowed severe motor disabled patients to practically control a wheelchair for use in their home environment. The users were able to select from 9 possible destination commands in the automatic mode and from 4 directional commands (forward, backward, turn left and right) in the shared-control mode. These commands were selected via the designed P300 processing system. The wheelchair was steered to the desired location by the implemented navigation system. Safety of the user was ensured during wheelchair navigation due to the included obstacle detection and avoidance features. A combination of P300 and EOG was used as a hybrid BCW system. The user could fully operate the system such as enabling P300 detection system, mode shifting and stop/cancelation command by performing a different consecutive blinks to generate eye blinking patterns. The results revealed that the prototype BCW could be operated in either of the proposed modes. With the new design of the LED-based P300 stimulator, the average accuracies of the P300 detection algorithm in the shared-control and automatic modes were 95.31 and 83.42% with 3.09 and 3.79 bits/min, respectively. The P300 classification error was acceptable, as the user could cancel an incorrect command by blinking 2 times. Moreover, the proposed navigation system had a flexible design that could be interfaced with other assistive technologies. This research developed 3 alternative input modules: an eye tracker module and chin and hand controller modules. The user could select the most suitable assistive technology based on his/her level of disability. Other existing assistive technologies could also be connected to the proposed system in the future using the same protocol.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anton P, Lee S, Aharon W, Roni K, Lior H, Yaara Y, Nachum S, Noam S (2010) Sniffing enables communication and environmental control for the severely disabled. Proc Natl Acad Sci 107:14413–14418CrossRef Anton P, Lee S, Aharon W, Roni K, Lior H, Yaara Y, Nachum S, Noam S (2010) Sniffing enables communication and environmental control for the severely disabled. Proc Natl Acad Sci 107:14413–14418CrossRef
Zurück zum Zitat Arai K, Ronny M (2011) Eyes based eletric wheel chair control system. Int J Adv Comput Sci Appl 12:98–105 Arai K, Ronny M (2011) Eyes based eletric wheel chair control system. Int J Adv Comput Sci Appl 12:98–105
Zurück zum Zitat Brice R, Etienne B, Cuntai G, Haihong Z, Chee L T, Qiang Z, Marcelo A, Christian L (2006) A brain controlled wheelchair based on P300 and path guidance. In: Biomechatron (Biorob), pp 1001–1006 Brice R, Etienne B, Cuntai G, Haihong Z, Chee L T, Qiang Z, Marcelo A, Christian L (2006) A brain controlled wheelchair based on P300 and path guidance. In: Biomechatron (Biorob), pp 1001–1006
Zurück zum Zitat Brice R, Etienne B, Cuntai G, Haihong Z (2010) A brain controlled wheelchair to navigate in familiar environments. Neural Syst Rehabil Eng 18:590–598CrossRef Brice R, Etienne B, Cuntai G, Haihong Z (2010) A brain controlled wheelchair to navigate in familiar environments. Neural Syst Rehabil Eng 18:590–598CrossRef
Zurück zum Zitat Christian M, Thorsten L, Tim L, Thomas R, Axel G, Bernd KB (2009) Navigating a smart wheelchair with a brain-computer interface interpreting steady-state visual evoked potentials. In: Intelligent robots and systems, pp 1118–1125 Christian M, Thorsten L, Tim L, Thomas R, Axel G, Bernd KB (2009) Navigating a smart wheelchair with a brain-computer interface interpreting steady-state visual evoked potentials. In: Intelligent robots and systems, pp 1118–1125
Zurück zum Zitat Dilok P, Yodchanan W (2011) Illuminant effect on LCD and LED stimulators for P300-based brain-controlled wheelchair. In: Biomedical engineering international conference (BMEiCON), pp 254257 Dilok P, Yodchanan W (2011) Illuminant effect on LCD and LED stimulators for P300-based brain-controlled wheelchair. In: Biomedical engineering international conference (BMEiCON), pp 254257
Zurück zum Zitat Dilok P, Yodchanan W (2012) Semi-automatic P300-based brain-controlled wheelchair. In: Complex medical engineering (CME), pp 455–460 Dilok P, Yodchanan W (2012) Semi-automatic P300-based brain-controlled wheelchair. In: Complex medical engineering (CME), pp 455–460
Zurück zum Zitat Dilok P, Sarawin K, Pongsakom W, Boonyanuch W, Yodchanan W (2014) Automated navigation system for eye-based wheelchair controls. In: Biomedical engineering international conference (BMEiCON) Dilok P, Sarawin K, Pongsakom W, Boonyanuch W, Yodchanan W (2014) Automated navigation system for eye-based wheelchair controls. In: Biomedical engineering international conference (BMEiCON)
Zurück zum Zitat Duan J, Li Z, Yang C, Xu P (2014) Shared control of a brainactuated intelligent wheelchair. In: 11th world congress on intelligent control and automation (WCICA), pp 341–346 Duan J, Li Z, Yang C, Xu P (2014) Shared control of a brainactuated intelligent wheelchair. In: 11th world congress on intelligent control and automation (WCICA), pp 341–346
Zurück zum Zitat Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523CrossRefPubMed Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523CrossRefPubMed
Zurück zum Zitat Gautam G (2014) Eye movement based electronic wheel chair for physically challenged persons. Int J Sci Technol Res 3:206–212 Gautam G (2014) Eye movement based electronic wheel chair for physically challenged persons. Int J Sci Technol Res 3:206–212
Zurück zum Zitat Gray L, Galetta SL, Siegal T, Schatz N (1997) The central visual field in homonymous hemianopia. Arch Neurol 54:312–317CrossRefPubMed Gray L, Galetta SL, Siegal T, Schatz N (1997) The central visual field in homonymous hemianopia. Arch Neurol 54:312–317CrossRefPubMed
Zurück zum Zitat Gwang ME, Kyeong K, Chul SK, James L, Soon CC, Bongsoo L, Hiroki H, Norio F, Ryoko F, Takashi W (2007) Gyro-mouse for the disabled: ‘Click’ and ‘position’ control of the mouse cursor. Int J Control Autom Syst 5:147–154 Gwang ME, Kyeong K, Chul SK, James L, Soon CC, Bongsoo L, Hiroki H, Norio F, Ryoko F, Takashi W (2007) Gyro-mouse for the disabled: ‘Click’ and ‘position’ control of the mouse cursor. Int J Control Autom Syst 5:147–154
Zurück zum Zitat Horacio AB, Shir BZ, Shlomo B, Marta K (2011) Parafoveal perception during sentence reading?: an ERP paradigm using rapid serial visual presentation (RSVP) with flankers. Psychophysiology 48:523–531CrossRef Horacio AB, Shir BZ, Shlomo B, Marta K (2011) Parafoveal perception during sentence reading?: an ERP paradigm using rapid serial visual presentation (RSVP) with flankers. Psychophysiology 48:523–531CrossRef
Zurück zum Zitat Hugh H (2009) Exoskeletons and orthoses: classification, design challenges and future directions. Neuroeng Rehabil 6:2387–2396 Hugh H (2009) Exoskeletons and orthoses: classification, design challenges and future directions. Neuroeng Rehabil 6:2387–2396
Zurück zum Zitat Hugh DW, Tim B (2006a) Simultaneous localization and mapping: part I”. Robot Autom Mag 13:99–110 Hugh DW, Tim B (2006a) Simultaneous localization and mapping: part I”. Robot Autom Mag 13:99–110
Zurück zum Zitat Hugh DW, Tim B (2006b) Hugh DW, Tim B (2006) Simultaneous localization and mapping (SLAM): part II”. IEEE Robot Autom Mag 13:108–117CrossRef Hugh DW, Tim B (2006b) Hugh DW, Tim B (2006) Simultaneous localization and mapping (SLAM): part II”. IEEE Robot Autom Mag 13:108–117CrossRef
Zurück zum Zitat Inaki I, Javier MA, Andrea K, Javier M (2009) Non-invasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans Robot 25:614–627CrossRef Inaki I, Javier MA, Andrea K, Javier M (2009) Non-invasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans Robot 25:614–627CrossRef
Zurück zum Zitat Jeonghee K, Hangue P, Joy B et al (2013) The tongue enables computer and wheelchair control for people with spinal cord injury. Sci Transl Med 5:213 Jeonghee K, Hangue P, Joy B et al (2013) The tongue enables computer and wheelchair control for people with spinal cord injury. Sci Transl Med 5:213
Zurück zum Zitat Johan P, Jose del RM, Gerolf V, Eileen L, Ferran G, Pierre WF, Hendrik VB, Mamix N (2007) Adaptive shared control of a brain-actuated simulated wheelchair. In: Rehabilitation robotics Johan P, Jose del RM, Gerolf V, Eileen L, Ferran G, Pierre WF, Hendrik VB, Mamix N (2007) Adaptive shared control of a brain-actuated simulated wheelchair. In: Rehabilitation robotics
Zurück zum Zitat John C, Lynne S, Jayme K (2008) Neuromuscular electrical stimulation for motor restoration in hemiplegia. Topics Stroke Rehabil 15:412–426CrossRef John C, Lynne S, Jayme K (2008) Neuromuscular electrical stimulation for motor restoration in hemiplegia. Topics Stroke Rehabil 15:412–426CrossRef
Zurück zum Zitat Jonathan RW, Niels B, Dennis JM, Gert P, Theresa MV (2002) Brain-computerinterfaces for communication and control. Clin Neurophysiol 113:767–791CrossRef Jonathan RW, Niels B, Dennis JM, Gert P, Theresa MV (2002) Brain-computerinterfaces for communication and control. Clin Neurophysiol 113:767–791CrossRef
Zurück zum Zitat Karl L, Kaitlin C, Alexander D, Kaleb S (2013) Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J Neural Eng 10:4 Karl L, Kaitlin C, Alexander D, Kaleb S (2013) Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J Neural Eng 10:4
Zurück zum Zitat Kazuo T, Kazuyuki M, Hua OW (2005) Electroencephalogram-based control of an electric wheelchair. Robotics 21:762–766 Kazuo T, Kazuyuki M, Hua OW (2005) Electroencephalogram-based control of an electric wheelchair. Robotics 21:762–766
Zurück zum Zitat Krzysztof D, Piotr W (2015) Brain-computer interface for mobile devices. J Med Inf Technol 24 Krzysztof D, Piotr W (2015) Brain-computer interface for mobile devices. J Med Inf Technol 24
Zurück zum Zitat Kyuwan C, Andrzej C (2008) Control of a wheelchair by motor imagery in real time. In: Intelligent data engineering and automated learning, pp 330–337 Kyuwan C, Andrzej C (2008) Control of a wheelchair by motor imagery in real time. In: Intelligent data engineering and automated learning, pp 330–337
Zurück zum Zitat Miami B (2009) Feature extraction and classification of EEG signals for rapid P300 mind spelling. In: International conference on machine learning and applications Miami B (2009) Feature extraction and classification of EEG signals for rapid P300 mind spelling. In: International conference on machine learning and applications
Zurück zum Zitat Michael J, Kevin G, John A, Ruth F (2008) A sip-and-puff wireless remote control for the Apple iPod. Assist Technol 20:107–110CrossRef Michael J, Kevin G, John A, Ruth F (2008) A sip-and-puff wireless remote control for the Apple iPod. Assist Technol 20:107–110CrossRef
Zurück zum Zitat Morgan Q, Brian G, Ken C, Josh F, Tully F, Jeremy L, Eric B, Rob W, Andrew N (2009) ROS: an open-source Robot Operating System. In: ICRA workshop on open source software Morgan Q, Brian G, Ken C, Josh F, Tully F, Jeremy L, Eric B, Rob W, Andrew N (2009) ROS: an open-source Robot Operating System. In: ICRA workshop on open source software
Zurück zum Zitat Ng DW-K, Soh Y-W, Goh S-Y (2014) Development of an autonomous BCI wheelchair. In: IEEE symposium computational intelligence brain computer interfaces, pp 1–4 Ng DW-K, Soh Y-W, Goh S-Y (2014) Development of an autonomous BCI wheelchair. In: IEEE symposium computational intelligence brain computer interfaces, pp 1–4
Zurück zum Zitat Rossella B, Simone C, Bernardo DS, Giulio F, Matteo M, Davide M (2008) Brain control of a smart wheelchair. Intell Auton Syst 10:221–228 Rossella B, Simone C, Bernardo DS, Giulio F, Matteo M, Davide M (2008) Brain control of a smart wheelchair. Intell Auton Syst 10:221–228
Zurück zum Zitat Stefan K, Johannes M, Thorsten G, Karen P, Uwe K, Oskar S (2013) Hector open source modules for autonomous mapping and navigation with rescue robots. In: RoboCup 2013: Robot World Cup XVII, pp 624–631 Stefan K, Johannes M, Thorsten G, Karen P, Uwe K, Oskar S (2013) Hector open source modules for autonomous mapping and navigation with rescue robots. In: RoboCup 2013: Robot World Cup XVII, pp 624–631
Zurück zum Zitat Susumu H, James AL, Jonathan M, Xiao L, Jeff AB (2006) The vocal joystick: evaluation of voice based cursor control techniques. In: ASSETS, pp 197–204 Susumu H, James AL, Jonathan M, Xiao L, Jeff AB (2006) The vocal joystick: evaluation of voice based cursor control techniques. In: ASSETS, pp 197–204
Zurück zum Zitat Torsten F, Rainer N (2007) Nordmann alternative wheelchair control. In: Proc RAT’07, pp 67–74 Torsten F, Rainer N (2007) Nordmann alternative wheelchair control. In: Proc RAT’07, pp 67–74
Zurück zum Zitat Tyler S, Colin B, Michel JAG, Arthur P (2008) Tooth-click control of a hands-free computer interface”. IEEE Trans Biomed 55:2050–2056CrossRef Tyler S, Colin B, Michel JAG, Arthur P (2008) Tooth-click control of a hands-free computer interface”. IEEE Trans Biomed 55:2050–2056CrossRef
Zurück zum Zitat Ulrich H, Jean-M V, Touradj E, Karin D (2008) An efficient P300-based brain–computer interface for disabled subjects. J Neurosci Methods 167:115–125CrossRef Ulrich H, Jean-M V, Touradj E, Karin D (2008) An efficient P300-based brain–computer interface for disabled subjects. J Neurosci Methods 167:115–125CrossRef
Zurück zum Zitat Varona-Moya S, Velasco-Álvarez F, Sancha-Ros S, Fernández-Rodríguez Á, Blanca MJ, Ron-Angevin R (2015) Wheelchair navigation with an audio-cued, two-class motor imagery-based brain—computer interface system. In: 7th international IEEE/EMBS conference on neural engineering (NER), pp 22–24 Varona-Moya S, Velasco-Álvarez F, Sancha-Ros S, Fernández-Rodríguez Á, Blanca MJ, Ron-Angevin R (2015) Wheelchair navigation with an audio-cued, two-class motor imagery-based brain—computer interface system. In: 7th international IEEE/EMBS conference on neural engineering (NER), pp 22–24
Zurück zum Zitat Yunyong P, Yodchanan W (2010) Hybrid EEG-EOG brain-computer interface system for practical machine control. In: EMBC Yunyong P, Yodchanan W (2010) Hybrid EEG-EOG brain-computer interface system for practical machine control. In: EMBC
Zurück zum Zitat Yunyong P, Yodchanan W (2012) Minimal-assisted SSVEP-based brain-computer interface device. In: APSIPA ASC, pp 1–4 Yunyong P, Yodchanan W (2012) Minimal-assisted SSVEP-based brain-computer interface device. In: APSIPA ASC, pp 1–4
Zurück zum Zitat Zhang R et al (2015) Control of a wheelchair in an indoor environment based on a brain-computer interface and automated navigation. IEEE Trans Neural Syst Rehabil Eng 24:128–139CrossRefPubMed Zhang R et al (2015) Control of a wheelchair in an indoor environment based on a brain-computer interface and automated navigation. IEEE Trans Neural Syst Rehabil Eng 24:128–139CrossRefPubMed
Metadaten
Titel
Navigation-synchronized multimodal control wheelchair from brain to alternative assistive technologies for persons with severe disabilities
verfasst von
Dilok Puanhvuan
Sarawin Khemmachotikun
Pongsakorn Wechakarn
Boonyanuch Wijarn
Yodchanan Wongsawat
Publikationsdatum
15.02.2017
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 2/2017
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-017-9424-6

Weitere Artikel der Ausgabe 2/2017

Cognitive Neurodynamics 2/2017 Zur Ausgabe