Skip to main content
Erschienen in: Cognitive Neurodynamics 5/2023

30.11.2022 | Research Article

Inter-areal transmission of multiple neural signals through frequency-division-multiplexing communication

verfasst von: Hao Si, Xiaojuan Sun

Erschienen in: Cognitive Neurodynamics | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Inter-areal information transmission in the brain cortex relates to cognitive functions. Researches used to pay attention to activity pattern transmission, signals gating, or routing in neuronal networks. However, the underlying mechanism of simultaneous transmission of multiple neural signals in the same channel across networks remains unclear. In this work, we construct a two-layer feedforward neuronal network (sender-receiver) with each layer’s intrinsic rhythms consisting of slow- (low-frequency) and fast- gamma rhythms (high-frequency), investigating how to realize simultaneous transmission of multiple signals in neuronal systems. With the aid of resonance and frequency analysis, it is shown that low- and high-frequency signals can be transmitted simultaneously in such a feedforward network through frequency division multiplexing (FDM) communication. The transmission performance is related to the local resonance, connectivity, as well as background noise. Moreover, low- and high-frequency signals can also be gated or selected with appropriate adjustments of recurrent connection strength and delay, and background noise. Our model might provide a novel insight into the underlying mechanism of complex signals communication between different cortex areas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abeles M, Bergman H, Margalit E et al (1993) Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J Neurophysiol 70(4):1629–1638CrossRefPubMed Abeles M, Bergman H, Margalit E et al (1993) Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J Neurophysiol 70(4):1629–1638CrossRefPubMed
Zurück zum Zitat Aertsen A, Diesmann M, Gewaltig M (1996) Propagation of synchronous spiking activity in feedforward neural networks. J Physiol-Paris 90(3):243–247CrossRefPubMed Aertsen A, Diesmann M, Gewaltig M (1996) Propagation of synchronous spiking activity in feedforward neural networks. J Physiol-Paris 90(3):243–247CrossRefPubMed
Zurück zum Zitat Bastos AM, Vezoli J, Bosman CA et al (2015) Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:390–401CrossRefPubMed Bastos AM, Vezoli J, Bosman CA et al (2015) Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:390–401CrossRefPubMed
Zurück zum Zitat Belluscio MA, Mizuseki K, Schmidt R et al (2012) Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci 32:423–435CrossRefPubMedPubMedCentral Belluscio MA, Mizuseki K, Schmidt R et al (2012) Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci 32:423–435CrossRefPubMedPubMedCentral
Zurück zum Zitat Bosman CA, Schoffelen JM, Brunet NM et al (2012) Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75:875–888CrossRefPubMedPubMedCentral Bosman CA, Schoffelen JM, Brunet NM et al (2012) Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75:875–888CrossRefPubMedPubMedCentral
Zurück zum Zitat Chung S, Abbott LF (2021) Neural population geometry: an approach for understanding biological and artificial neural networks. Current Opin Neurobiol 70:137–144CrossRef Chung S, Abbott LF (2021) Neural population geometry: an approach for understanding biological and artificial neural networks. Current Opin Neurobiol 70:137–144CrossRef
Zurück zum Zitat Colgin LL, Denninger T, Fyhn M et al (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357CrossRefPubMed Colgin LL, Denninger T, Fyhn M et al (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357CrossRefPubMed
Zurück zum Zitat Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402:529–533CrossRefPubMed Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402:529–533CrossRefPubMed
Zurück zum Zitat Fernández-Ruiz A, Oliva A, Soula M, et al (2021) Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies. Science 372(6537): eabf3119 Fernández-Ruiz A, Oliva A, Soula M, et al (2021) Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies. Science 372(6537): eabf3119
Zurück zum Zitat Feulner B, Clopath C (2021) Neural manifold under plasticity in a goal driven learning behaviour. PLoS Comput biol 17 2:e1008,621 Feulner B, Clopath C (2021) Neural manifold under plasticity in a goal driven learning behaviour. PLoS Comput biol 17 2:e1008,621
Zurück zum Zitat Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cognitive Sci 9(10):474–480CrossRef Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cognitive Sci 9(10):474–480CrossRef
Zurück zum Zitat Gerstner W, Kistler WM, Naud R et al (2014) Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press, USACrossRef Gerstner W, Kistler WM, Naud R et al (2014) Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press, USACrossRef
Zurück zum Zitat Gewaltig MO, Diesmann M (2007) Nest (neural simulation tool). Scholarpedia 2(4):1430CrossRef Gewaltig MO, Diesmann M (2007) Nest (neural simulation tool). Scholarpedia 2(4):1430CrossRef
Zurück zum Zitat Gewaltig MO, Diesmann M, Aertsen A (2001) Propagation of cortical synfire activity: survival probability in single trials and stability in the mean. Neural Netw 14(6):657–673CrossRefPubMed Gewaltig MO, Diesmann M, Aertsen A (2001) Propagation of cortical synfire activity: survival probability in single trials and stability in the mean. Neural Netw 14(6):657–673CrossRefPubMed
Zurück zum Zitat Guo D, Perc M, Zhang Y, et al (2017) Frequency-difference-dependent stochastic resonance in neural systems. Physical review E 96 2-1:022,415 Guo D, Perc M, Zhang Y, et al (2017) Frequency-difference-dependent stochastic resonance in neural systems. Physical review E 96 2-1:022,415
Zurück zum Zitat Hahn G, Ponce-Alvarez A, Deco G et al (2018) Portraits of communication in neuronal networks. Nat Rev Neurosci 20:117–127CrossRef Hahn G, Ponce-Alvarez A, Deco G et al (2018) Portraits of communication in neuronal networks. Nat Rev Neurosci 20:117–127CrossRef
Zurück zum Zitat Han C, Wang B, Yang G et al (2020) Neural mechanism of orientation selectivity for distinct gamma oscillations in cat v1. J Vision 20:1116CrossRef Han C, Wang B, Yang G et al (2020) Neural mechanism of orientation selectivity for distinct gamma oscillations in cat v1. J Vision 20:1116CrossRef
Zurück zum Zitat Han C, Wang TY, Wu Y, et al (2021b) The generation and modulation of distinct gamma oscillations with local, horizontal, and feedback connections in the primary visual cortex: A model study on large-scale networks. Neural Plasticity 2021 Han C, Wang TY, Wu Y, et al (2021b) The generation and modulation of distinct gamma oscillations with local, horizontal, and feedback connections in the primary visual cortex: A model study on large-scale networks. Neural Plasticity 2021
Zurück zum Zitat Han C, Shapley R, Xing D (2022) Gamma rhythms in the visual cortex: functions and mechanisms. Cognitive Neurodynamics 16:745–756CrossRefPubMed Han C, Shapley R, Xing D (2022) Gamma rhythms in the visual cortex: functions and mechanisms. Cognitive Neurodynamics 16:745–756CrossRefPubMed
Zurück zum Zitat Kaufman MT, Churchland MM, Ryu SI et al (2014) Cortical activity in the null space: permitting preparation without movement. Nat Neurosci 17:440–448CrossRefPubMedPubMedCentral Kaufman MT, Churchland MM, Ryu SI et al (2014) Cortical activity in the null space: permitting preparation without movement. Nat Neurosci 17:440–448CrossRefPubMedPubMedCentral
Zurück zum Zitat van Kerkoerle T, Self MW, Dagnino B et al (2014) Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proceed Nat Acad Sci 111:14332–14341CrossRef van Kerkoerle T, Self MW, Dagnino B et al (2014) Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proceed Nat Acad Sci 111:14332–14341CrossRef
Zurück zum Zitat Kohn A, Jasper AI, Semedo JD et al (2020) Principles of corticocortical communication: Proposed schemes and design considerations. Trends Neurosci 43:725–737CrossRefPubMedPubMedCentral Kohn A, Jasper AI, Semedo JD et al (2020) Principles of corticocortical communication: Proposed schemes and design considerations. Trends Neurosci 43:725–737CrossRefPubMedPubMedCentral
Zurück zum Zitat Kumar A, Rotter S, Aertsen A (2010) Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat Rev Neurosci 11:615–627CrossRefPubMed Kumar A, Rotter S, Aertsen A (2010) Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat Rev Neurosci 11:615–627CrossRefPubMed
Zurück zum Zitat Lankarany M, Al-Basha D, Ratté S, et al (2019) Differentially synchronized spiking enables multiplexed neural coding. Proceedings of the National Academy of Sciences of the United States of America 116:10,097–10,102 Lankarany M, Al-Basha D, Ratté S, et al (2019) Differentially synchronized spiking enables multiplexed neural coding. Proceedings of the National Academy of Sciences of the United States of America 116:10,097–10,102
Zurück zum Zitat Litvak V, Sompolinsky H, Segev I et al (2003) On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. J Neurosci 23:3006–3015CrossRefPubMedPubMedCentral Litvak V, Sompolinsky H, Segev I et al (2003) On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. J Neurosci 23:3006–3015CrossRefPubMedPubMedCentral
Zurück zum Zitat Mejías JF, Murray JD, Kennedy H, et al (2016) Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. Science Advances 2(11): e1601335 Mejías JF, Murray JD, Kennedy H, et al (2016) Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. Science Advances 2(11): e1601335
Zurück zum Zitat Michalareas G, Vezoli J, van Pelt S et al (2016) Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89:384–397CrossRefPubMedPubMedCentral Michalareas G, Vezoli J, van Pelt S et al (2016) Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89:384–397CrossRefPubMedPubMedCentral
Zurück zum Zitat Murty DV, Shirhatti V, Ravishankar P et al (2018) Large visual stimuli induce two distinct gamma oscillations in primate visual cortex. J Neurosci 38:2730–2744CrossRefPubMedPubMedCentral Murty DV, Shirhatti V, Ravishankar P et al (2018) Large visual stimuli induce two distinct gamma oscillations in primate visual cortex. J Neurosci 38:2730–2744CrossRefPubMedPubMedCentral
Zurück zum Zitat Murty DV, Manikandan K, Kumar WS, et al (2020) Gamma oscillations weaken with age in healthy elderly in human eeg. NeuroImage 215:116,826 – 116,826 Murty DV, Manikandan K, Kumar WS, et al (2020) Gamma oscillations weaken with age in healthy elderly in human eeg. NeuroImage 215:116,826 – 116,826
Zurück zum Zitat Oke OO, Magony A, Anver H, et al (2010) High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro. European Journal of Neuroscience 31: 1435–1445 Oke OO, Magony A, Anver H, et al (2010) High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro. European Journal of Neuroscience 31: 1435–1445
Zurück zum Zitat Palmigiano A, Geisel T, Wolf F et al (2017) Flexible information routing by transient synchrony. Nat Neurosci 20:1014–1022CrossRefPubMed Palmigiano A, Geisel T, Wolf F et al (2017) Flexible information routing by transient synchrony. Nat Neurosci 20:1014–1022CrossRefPubMed
Zurück zum Zitat Raizada RDS, Grossberg S (2003) Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. Cerebral cortex 13(1):100–13CrossRefPubMed Raizada RDS, Grossberg S (2003) Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. Cerebral cortex 13(1):100–13CrossRefPubMed
Zurück zum Zitat Rotter S, Diesmann M (1999) Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biol Cybern 81:381–402CrossRefPubMed Rotter S, Diesmann M (1999) Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biol Cybern 81:381–402CrossRefPubMed
Zurück zum Zitat Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Current Opin Neurobiol 4(4):569–579CrossRef Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Current Opin Neurobiol 4(4):569–579CrossRef
Zurück zum Zitat Teng X, Poeppel D (2019) Theta and gamma bands encode acoustic dynamics over wide-ranging timescales. Cerebral Cortex 30(4): 2600-2614 Teng X, Poeppel D (2019) Theta and gamma bands encode acoustic dynamics over wide-ranging timescales. Cerebral Cortex 30(4): 2600-2614
Zurück zum Zitat van Rossum MCW, Turrigiano GG, Nelson SB (2002) Fast propagation of firing rates through layered networks of noisy neurons. J Neurosci 22(5):1956–1966CrossRefPubMedPubMedCentral van Rossum MCW, Turrigiano GG, Nelson SB (2002) Fast propagation of firing rates through layered networks of noisy neurons. J Neurosci 22(5):1956–1966CrossRefPubMedPubMedCentral
Zurück zum Zitat Vogels TP, Abbott LF (2005) Signal propagation and logic gating in networks of integrate-and-fire neurons. J Neurosc 25(46):10786–10795CrossRef Vogels TP, Abbott LF (2005) Signal propagation and logic gating in networks of integrate-and-fire neurons. J Neurosc 25(46):10786–10795CrossRef
Zurück zum Zitat Vogels TP, Abbott LF (2009) Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nat Neurosci 12, 483–491 Vogels TP, Abbott LF (2009) Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nat Neurosci 12, 483–491
Zurück zum Zitat Wang X, Yang GR (2018) A disinhibitory circuit motif and flexible information routing in the brain. Current Opin Neurobiol 49:75–83CrossRef Wang X, Yang GR (2018) A disinhibitory circuit motif and flexible information routing in the brain. Current Opin Neurobiol 49:75–83CrossRef
Zurück zum Zitat Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cognitive Sci 7:553–559CrossRef Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cognitive Sci 7:553–559CrossRef
Metadaten
Titel
Inter-areal transmission of multiple neural signals through frequency-division-multiplexing communication
verfasst von
Hao Si
Xiaojuan Sun
Publikationsdatum
30.11.2022
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 5/2023
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09914-y

Weitere Artikel der Ausgabe 5/2023

Cognitive Neurodynamics 5/2023 Zur Ausgabe