Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 12/2008

01.12.2008

Strain-Controlled Low-Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy

verfasst von: S. Begum, D.L. Chen, S. Xu, Alan A. Luo

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 12/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To reduce fuel consumption and greenhouse gas emissions, magnesium alloys are being considered for automotive and aerospace applications due to their low density, high specific strength and stiffness, and other attractive traits. Structural applications of magnesium components require low-cycle fatigue (LCF) behavior, since cyclic loading or thermal stresses are often encountered. The aim of this article was to study the cyclic deformation characteristics and evaluate LCF behavior of a recently developed AM30 extruded magnesium alloy. This alloy exhibited a strong cyclic hardening characteristic, with a cyclic strain-hardening exponent of 0.33 compared to the monotonic strain-hardening exponent of 0.15. With increasing total strain amplitude, both plastic strain amplitude and mean stress increased and fatigue life decreased. A significant difference between the tensile and compressive yield stresses occurred, leading to asymmetric hysteresis loops at high strain amplitudes due to twinning in compression and subsequent detwinning in tension. A noticeable change in the modulus was observed due to the pseudoelastic behavior of this alloy. The Coffin–Manson law and Basquin equation could be used to describe the fatigue life. At low strain ratios the alloy showed strong cyclic hardening, which became less significant as the strain ratio increased. The lower the strain ratio, the lower the stress amplitude and mean stress but the higher the plastic strain amplitude, corresponding to a longer fatigue life. Fatigue life also increased with increasing strain rate. Fatigue crack initiation occurred from the specimen surface and crack propagation was mainly characterized by striation-like features. Multiple initiation sites at the specimen surface were observed at higher strain amplitudes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.U. Kainer: Magnesium Alloys and Technology, Wiley-VCH, Cambridge, United Kingdom, 2003 K.U. Kainer: Magnesium Alloys and Technology, Wiley-VCH, Cambridge, United Kingdom, 2003
3.
Zurück zum Zitat A.A. Luo: SAE 2005 Transactions–Journal of Materials and Manufacturing, SAE, Warrendale, PA, pp. 411–21 A.A. Luo: SAE 2005 Transactions–Journal of Materials and Manufacturing, SAE, Warrendale, PA, pp. 411–21
4.
Zurück zum Zitat H.E. Friedrich, B.L. Mordike: Magnesium Technology—Metallurgy, Design Data, Applications, Springer-Verlag, Berlin, Germany, 2006 H.E. Friedrich, B.L. Mordike: Magnesium Technology—Metallurgy, Design Data, Applications, Springer-Verlag, Berlin, Germany, 2006
5.
Zurück zum Zitat F. Li, Y. Wang, L. Chen, Z. Liu, J. Zhou: J. Mater. Sci., 2005, vol. 40, pp. 1529–31CrossRef F. Li, Y. Wang, L. Chen, Z. Liu, J. Zhou: J. Mater. Sci., 2005, vol. 40, pp. 1529–31CrossRef
6.
Zurück zum Zitat U. Noster, B. Scholtes: Z. Metallkd., 2003, vol. 94 (5), pp. 559–63 U. Noster, B. Scholtes: Z. Metallkd., 2003, vol. 94 (5), pp. 559–63
7.
Zurück zum Zitat S. Hasegawa, Y. Tsuchida, H. Yano, M. Matsui: Int. J. Fatigue, 2007, vol. 29, pp. 1839–45CrossRef S. Hasegawa, Y. Tsuchida, H. Yano, M. Matsui: Int. J. Fatigue, 2007, vol. 29, pp. 1839–45CrossRef
9.
Zurück zum Zitat L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, P.K. Liaw: Acta Mater., 2008, vol. 56, pp. 688–95CrossRef L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, P.K. Liaw: Acta Mater., 2008, vol. 56, pp. 688–95CrossRef
10.
Zurück zum Zitat L. Chen, C. Wang, W. Wu, Z. Liu, G.M. Stoica, L. Wu, P.K. Liaw: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2235–41CrossRef L. Chen, C. Wang, W. Wu, Z. Liu, G.M. Stoica, L. Wu, P.K. Liaw: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2235–41CrossRef
11.
Zurück zum Zitat D.L. Goodenber, R.I. Stephens: J. Eng. Mater. Technol., 1993, vol. 115, pp. 391–97CrossRef D.L. Goodenber, R.I. Stephens: J. Eng. Mater. Technol., 1993, vol. 115, pp. 391–97CrossRef
12.
Zurück zum Zitat Z. Liu, Z.G. Wang, Y.L. Wang, H. Chen, H.J. Zhao, F. Klein: Mater. Sci. Technol., 2001, vol. 17 (3), pp. 264–68CrossRef Z. Liu, Z.G. Wang, Y.L. Wang, H. Chen, H.J. Zhao, F. Klein: Mater. Sci. Technol., 2001, vol. 17 (3), pp. 264–68CrossRef
13.
Zurück zum Zitat U. Noster, B. Scholtes: Mater. Sci. Forum, 2003, vols. 419–422, pp. 103–08 U. Noster, B. Scholtes: Mater. Sci. Forum, 2003, vols. 419–422, pp. 103–08
14.
Zurück zum Zitat A.A. Luo, A.K. Sachdev: Magnesium Technology, TMS, Warrendale, PA, 2007, pp. 321–26 A.A. Luo, A.K. Sachdev: Magnesium Technology, TMS, Warrendale, PA, 2007, pp. 321–26
15.
Zurück zum Zitat L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, S. Godet: Acta Mater., 2007, vol. 55, pp. 3899–3910CrossRef L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, S. Godet: Acta Mater., 2007, vol. 55, pp. 3899–3910CrossRef
16.
Zurück zum Zitat M.H. Yoo, J.R. Morris, K.M. Ho, S.R. Agnew: Mater. Sci. Eng. A, 2001, vols. A319–A321, pp. 87–92 M.H. Yoo, J.R. Morris, K.M. Ho, S.R. Agnew: Mater. Sci. Eng. A, 2001, vols. A319–A321, pp. 87–92
17.
Zurück zum Zitat G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Series, McGraw-Hill, New York, NY, 1986. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Series, McGraw-Hill, New York, NY, 1986.
18.
Zurück zum Zitat A. Serra, D.J. Bacon, R.C. Pond: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 809–12 A. Serra, D.J. Bacon, R.C. Pond: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 809–12
19.
Zurück zum Zitat S. Xu, V.Y. Gertsman, J. Li, J.P. Thompson, M. Sahoo: Can. Metall. Q., 2005, vol. 44 (2), pp. 155–66. S. Xu, V.Y. Gertsman, J. Li, J.P. Thompson, M. Sahoo: Can. Metall. Q., 2005, vol. 44 (2), pp. 155–66.
20.
Zurück zum Zitat D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, C.N. Tome: Mater. Sci. Eng. A, 2005, vol. 399, pp. 1–12CrossRef D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, C.N. Tome: Mater. Sci. Eng. A, 2005, vol. 399, pp. 1–12CrossRef
21.
Zurück zum Zitat M.M. Myshlyaev, H.J. McQueen, A. Mwembela, E. Konopleva: Mater. Sci. Eng. A, 2002, vol. 337, pp. 121–33CrossRef M.M. Myshlyaev, H.J. McQueen, A. Mwembela, E. Konopleva: Mater. Sci. Eng. A, 2002, vol. 337, pp. 121–33CrossRef
22.
Zurück zum Zitat A.A. Salem, S.R. Kalidindi, R.D. Doherty, S.L. Semiatin: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 259–68CrossRef A.A. Salem, S.R. Kalidindi, R.D. Doherty, S.L. Semiatin: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 259–68CrossRef
23.
24.
25.
Zurück zum Zitat G. Robert, M.F. Matthias, G. Gunter: Mater. Sci. Eng A, 2005, vol. 395, pp. 338–49CrossRef G. Robert, M.F. Matthias, G. Gunter: Mater. Sci. Eng A, 2005, vol. 395, pp. 338–49CrossRef
26.
Zurück zum Zitat N. Munroe, X.L. Tan, and H.C. Gu: Scripta Mater., 1997, vol. 36 (12), pp. 1383–86CrossRef N. Munroe, X.L. Tan, and H.C. Gu: Scripta Mater., 1997, vol. 36 (12), pp. 1383–86CrossRef
27.
Zurück zum Zitat L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet: Magnesium Technology, TMS, Warrendale, PA, 2006, pp. 233–38 L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet: Magnesium Technology, TMS, Warrendale, PA, 2006, pp. 233–38
28.
Zurück zum Zitat J. Levesque, K. Inal, K.W. Neale, R.K. Mishra, A.A. Luo, L. Jiang: Magnesium Technology, TMS, Warrendale, PA, 2007, pp. 11–16 J. Levesque, K. Inal, K.W. Neale, R.K. Mishra, A.A. Luo, L. Jiang: Magnesium Technology, TMS, Warrendale, PA, 2007, pp. 11–16
29.
Zurück zum Zitat L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet: Scripta Mater., 2006, vol. 54, pp. 771–75CrossRef L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet: Scripta Mater., 2006, vol. 54, pp. 771–75CrossRef
30.
Zurück zum Zitat X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, R.H. Wagoner: Int. J. Plast., 2007, vol. 23, pp. 44–86CrossRef X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, R.H. Wagoner: Int. J. Plast., 2007, vol. 23, pp. 44–86CrossRef
31.
Zurück zum Zitat C. Sommer, H.J. Christ, H. Mughrabi: Acta Metall. Mater., 1991, vol. 39 (6), pp. 1177–87CrossRef C. Sommer, H.J. Christ, H. Mughrabi: Acta Metall. Mater., 1991, vol. 39 (6), pp. 1177–87CrossRef
32.
Zurück zum Zitat C.H. Caceres, T. Sumitomo, M. Veidt: Acta Mater., 2003, vol. 51, pp. 6211–18CrossRef C.H. Caceres, T. Sumitomo, M. Veidt: Acta Mater., 2003, vol. 51, pp. 6211–18CrossRef
33.
Zurück zum Zitat J.P. Nobre, U. Noster, M. Kornmeier, A.M. Dias, B. Scholtes: Key Eng. Mater., 2002, vols. 230–232, pp. 267–70 J.P. Nobre, U. Noster, M. Kornmeier, A.M. Dias, B. Scholtes: Key Eng. Mater., 2002, vols. 230–232, pp. 267–70
34.
Zurück zum Zitat S. Begum, D.L. Chen, S. Xu, and A.A. Luo: unpublished research, 2008 S. Begum, D.L. Chen, S. Xu, and A.A. Luo: unpublished research, 2008
35.
Zurück zum Zitat T.S. Srivatsan, L. Wei: Eng. Fract. Mech., 1997, vol. 56 (6), pp. 735–58CrossRef T.S. Srivatsan, L. Wei: Eng. Fract. Mech., 1997, vol. 56 (6), pp. 735–58CrossRef
36.
Zurück zum Zitat C. Laird: Fatigue Crack Propagation, ASTM STP 415, ASTM, West Conshohocken, PA, 1967, pp. 131–68 C. Laird: Fatigue Crack Propagation, ASTM STP 415, ASTM, West Conshohocken, PA, 1967, pp. 131–68
37.
Metadaten
Titel
Strain-Controlled Low-Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy
verfasst von
S. Begum
D.L. Chen
S. Xu
Alan A. Luo
Publikationsdatum
01.12.2008
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 12/2008
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-008-9677-0

Weitere Artikel der Ausgabe 12/2008

Metallurgical and Materials Transactions A 12/2008 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.