Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 6/2012

01.06.2012

Constitutive Model for Anisotropic Creep Behaviors of Single-Crystal Ni-Base Superalloys in the Low-Temperature, High-Stress Regime

verfasst von: Yoon Suk Choi, Triplicane A. Parthasarathy, Christopher Woodward, Dennis M. Dimiduk, Michael D. Uchic

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 6/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A crystallographic constitutive model is developed to capture orientation-sensitive primary and secondary creep behaviors within approximately 20 deg from the [0 0 1] orientation in single-crystal superalloys for the low-temperature and high-stress regime. The crystal plasticity-based constitutive formulations phenomenologically incorporate experimentally observed dislocation micromechanisms. Specifically, the model numerically delineates the nucleation, propagation, and hardening of a\( \langle 1 { 1 2} \rangle \) dislocations that shear multiple \( \gamma^{\prime } \) precipitates by creating extended stacking faults. Detailed numerical descriptions involve slip-system kinematics from a/2\( \langle 1 { 1 }0 \rangle \) dislocations shearing the \( \gamma \)-phase matrix, a\( \langle 1 { 1 2} \rangle \) stacking fault dislocation ribbons shearing the \( \gamma^{\prime } \)-phase precipitate, interactions between a/2\( \langle 1 { 1 }0 \rangle \) dislocations to nucleate a\( \langle 1 1 2\rangle \) dislocations, and interactions between the two types of dislocations. The new constitutive model was implemented in the finite-element method (FEM) framework and used to predict primary and secondary creep of a single-crystal superalloy CMSX-4 in three selected orientations near the [0 0 1] at 1023 K (750 °C) and 750 MPa. Simulation results showed a reasonable, qualitative agreement with the experimental data. The simulation results also indicated that a/2\( \langle 1 { 1 }0 \rangle \) matrix dislocations are important to limit the propagation of a\( \langle 1 { 1 2} \rangle \) dislocations, which leads to the transition to secondary creep.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge Press, Cambridge, UK, 2006, pp. 171–87.CrossRef R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge Press, Cambridge, UK, 2006, pp. 171–87.CrossRef
2.
Zurück zum Zitat Y. Koizumi, T. Yokokawa, H. Harada, and T. Kobayashi: J. Japan Inst. Met., 2006, vol. 70, pp. 176–79.CrossRef Y. Koizumi, T. Yokokawa, H. Harada, and T. Kobayashi: J. Japan Inst. Met., 2006, vol. 70, pp. 176–79.CrossRef
3.
Zurück zum Zitat N. Matan, D.C. Cox, P. Carter P, M.A. List, C.M.F. Rae, and R.C. Reed: Acta Mater., 1999, vol. 47, pp. 1549–63. N. Matan, D.C. Cox, P. Carter P, M.A. List, C.M.F. Rae, and R.C. Reed: Acta Mater., 1999, vol. 47, pp. 1549–63.
4.
Zurück zum Zitat C.M.F. Rae, N. Matan, D.C. Cox, M.A. Rist, and R.C. Reed: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2219–28.CrossRef C.M.F. Rae, N. Matan, D.C. Cox, M.A. Rist, and R.C. Reed: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2219–28.CrossRef
5.
Zurück zum Zitat C.M.F. Rae, N. Matan, and R.C. Reed: Mater. Sci. Eng. A, 2001, vol. 300, pp. 125–34.CrossRef C.M.F. Rae, N. Matan, and R.C. Reed: Mater. Sci. Eng. A, 2001, vol. 300, pp. 125–34.CrossRef
6.
Zurück zum Zitat G.L. Drew, R.C. Reed, K. Kakehi, and C.M.F. Rae: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 127–36. G.L. Drew, R.C. Reed, K. Kakehi, and C.M.F. Rae: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 127–36.
7.
8.
Zurück zum Zitat V.A. Vorontsov, C. Shen, Y. Wang, D. Dye, and C.M.F. Rae: Acta Mater., 2010, vol. 58, pp. 4110–19.CrossRef V.A. Vorontsov, C. Shen, Y. Wang, D. Dye, and C.M.F. Rae: Acta Mater., 2010, vol. 58, pp. 4110–19.CrossRef
9.
Zurück zum Zitat N. Matan, D.C. Cox, C.M.F. Rae, and R.C. Reed: Acta Mater., 1999, vol. 47, pp. 2031–45.CrossRef N. Matan, D.C. Cox, C.M.F. Rae, and R.C. Reed: Acta Mater., 1999, vol. 47, pp. 2031–45.CrossRef
10.
Zurück zum Zitat R.C. Reed, N. Matan, D.C. Cox DC, M.A. List MA, and C.M.F. Rae: Acta Mater., 1999, vol. 47, pp. 3367–81. R.C. Reed, N. Matan, D.C. Cox DC, M.A. List MA, and C.M.F. Rae: Acta Mater., 1999, vol. 47, pp. 3367–81.
11.
12.
Zurück zum Zitat T. Link, A. Epishin, M. Klaus, U. Bruckner, and A. Reznicek: Mater. Sci. Eng. A, 2005, vol. 405, pp. 254–65.CrossRef T. Link, A. Epishin, M. Klaus, U. Bruckner, and A. Reznicek: Mater. Sci. Eng. A, 2005, vol. 405, pp. 254–65.CrossRef
13.
Zurück zum Zitat Z.X. Zhang, J.C. Wang, H. Harada, and Y. Koizumi: Acta Mater., 2005, vol. 53, pp. 4623–33.CrossRef Z.X. Zhang, J.C. Wang, H. Harada, and Y. Koizumi: Acta Mater., 2005, vol. 53, pp. 4623–33.CrossRef
14.
Zurück zum Zitat P.M. Sarosi, R. Srinivasan, G.T. Eggeler, M.V. Nathal, and M.J. Mills: Acta Mater., 2007, vol. 55, pp. 2509–18.CrossRef P.M. Sarosi, R. Srinivasan, G.T. Eggeler, M.V. Nathal, and M.J. Mills: Acta Mater., 2007, vol. 55, pp. 2509–18.CrossRef
15.
Zurück zum Zitat R.C. Reed, D.C. Cox, and C.M.F. Rae: Mater. Sci. Eng. A, 2007, vol. 448, pp. 88–96.CrossRef R.C. Reed, D.C. Cox, and C.M.F. Rae: Mater. Sci. Eng. A, 2007, vol. 448, pp. 88–96.CrossRef
16.
Zurück zum Zitat D.M. Shah, S. Vega, S. Woodard, and A.D. Cetel: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed RC, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 197–206. D.M. Shah, S. Vega, S. Woodard, and A.D. Cetel: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed RC, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 197–206.
17.
Zurück zum Zitat J.J. Gilman: Micromechanics of Flow in Solids, McGraw-Hill, New York, NY, 1969, pp. 195. J.J. Gilman: Micromechanics of Flow in Solids, McGraw-Hill, New York, NY, 1969, pp. 195.
18.
Zurück zum Zitat D.W. MacLachlan, L.W. Wright, S.S.K. Gunturi, and D.M. Knowles: Int. J. Plast., 2000, vol. 17, pp. 441–67.CrossRef D.W. MacLachlan, L.W. Wright, S.S.K. Gunturi, and D.M. Knowles: Int. J. Plast., 2000, vol. 17, pp. 441–67.CrossRef
19.
Zurück zum Zitat D.W. MacLachlan, S.S.K. Gunturi, and D.M. Knowles: Comp. Mater. Sci., 2002, vol. 25, pp. 129–41.CrossRef D.W. MacLachlan, S.S.K. Gunturi, and D.M. Knowles: Comp. Mater. Sci., 2002, vol. 25, pp. 129–41.CrossRef
20.
Zurück zum Zitat D.W. MacLachlan and D.M. Knowles: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 385–98.CrossRef D.W. MacLachlan and D.M. Knowles: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 385–98.CrossRef
21.
Zurück zum Zitat D.W. MacLachlan and D.M. Knowles: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 399–409.CrossRef D.W. MacLachlan and D.M. Knowles: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 399–409.CrossRef
22.
Zurück zum Zitat A. Ma, D. Dye, and R.C. Reed: Acta Mater., 2008, vol. 56, pp. 1657–70.CrossRef A. Ma, D. Dye, and R.C. Reed: Acta Mater., 2008, vol. 56, pp. 1657–70.CrossRef
23.
Zurück zum Zitat H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.CrossRef H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.CrossRef
24.
26.
Zurück zum Zitat D. Peirce, R.J. Asaro, and A. Needleman: Acta Metall., 1983, vol. 31, pp. 1951–76.CrossRef D. Peirce, R.J. Asaro, and A. Needleman: Acta Metall., 1983, vol. 31, pp. 1951–76.CrossRef
27.
Zurück zum Zitat W. Schneider, J. Jammer, and H. Mughrabi H: Superalloys 1992, S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton DL, T. Khan, R.D. Kissinger, and D.L. Klarstrom, eds., TMS, Warrendale, PA, 1992, pp. 589–98. W. Schneider, J. Jammer, and H. Mughrabi H: Superalloys 1992, S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton DL, T. Khan, R.D. Kissinger, and D.L. Klarstrom, eds., TMS, Warrendale, PA, 1992, pp. 589–98.
28.
Zurück zum Zitat W. Schneider and H. Mughrabi: Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, eds., Institute of Metals, London, UK, 1993, pp. 209–20. W. Schneider and H. Mughrabi: Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, eds., Institute of Metals, London, UK, 1993, pp. 209–20.
29.
Zurück zum Zitat H. Basoalto, S.K. Sondhi, B.F. Dyson, and M. McLean: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 897–906. H. Basoalto, S.K. Sondhi, B.F. Dyson, and M. McLean: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 897–906.
30.
Zurück zum Zitat U. Glatzel and M. Feller-Kniepmeier: Scripta Metall., 1991, vol. 25, pp. 1845–50.CrossRef U. Glatzel and M. Feller-Kniepmeier: Scripta Metall., 1991, vol. 25, pp. 1845–50.CrossRef
32.
Zurück zum Zitat L. Tabourot, M. Fivel, and E. Rauch: Mater. Sci. Eng. A, 1997, vols. 234–236, pp. 639–42. L. Tabourot, M. Fivel, and E. Rauch: Mater. Sci. Eng. A, 1997, vols. 234–236, pp. 639–42.
33.
Zurück zum Zitat A. Arsenlis and D.M. Parks: J. Mech. Phys. Solids, 2002, vol. 50, pp. 1979–2009.CrossRef A. Arsenlis and D.M. Parks: J. Mech. Phys. Solids, 2002, vol. 50, pp. 1979–2009.CrossRef
34.
Zurück zum Zitat C.D. Allan: Ph.D. Dissertation, MIT, Cambridge, MA, 1995. C.D. Allan: Ph.D. Dissertation, MIT, Cambridge, MA, 1995.
Metadaten
Titel
Constitutive Model for Anisotropic Creep Behaviors of Single-Crystal Ni-Base Superalloys in the Low-Temperature, High-Stress Regime
verfasst von
Yoon Suk Choi
Triplicane A. Parthasarathy
Christopher Woodward
Dennis M. Dimiduk
Michael D. Uchic
Publikationsdatum
01.06.2012
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 6/2012
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-011-1047-7

Weitere Artikel der Ausgabe 6/2012

Metallurgical and Materials Transactions A 6/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.