Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 1/2016

24.11.2015

Thermodynamic Evaluation of Reaction Abilities of Structural Units in Fe-O Binary Melts Based on the Atom–Molecule Coexistence Theory

verfasst von: Xue-min Yang, Jin-yan Li, Meng-fang Wei, Jian Zhang

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A thermodynamic model for calculating the mass action concentrations \( N_{i} \) of structural units in Fe-O binary melts based on the atom–molecule coexistence theory, i.e., AMCT-\( N_{i} \) model, has been developed and verified to be valid through comparing with the calculated activities \( a_{{{\text{R,}}i}} \) of both O and Fe over a temperature range from 1833 K to 1973 K (1560 °C to 1700 °C). Moreover, activity coefficients \( \gamma_{\text{O}}^{{}} \) or \( f_{{{\%,{\text O}}}} \) or \( f_{\text{H,O}} \) of O coupled with activity \( a_{\text{R,O}} \) or \( a_{{{\% , \text{O}}}} \) or \( a_{\text{H,O}} \) of O and the corresponding first-order activity interaction coefficient \( \varepsilon_{\text{O}}^{\text{O}} \) or \( e_{\text{O}}^{\text{O}} \) or \( h_{\text{O}}^{\text{O}} \) of O to O have also been determined by the developed AMCT-\( N_{i} \) model and verified to be credible. In addition, the molar mixing thermodynamic properties of Fe-O binary melts have been determined to be accurate. Values of the calculated mass action concentration \( N_{\text{Fe}} \) of free Fe are in good agreement with results of the calculated activity \( a_{\text{R,Fe}} \) of Fe relative to pure liquid Fe(l) as standard state in Fe-O binary melts. The calculated mass action concentration \( N_{\text{O}} \) of free O has a closely corresponding relationship with the calculated activity \( a_{\text{R,O}} \) of O relative to ideal O2 at 101,325 Pa as standard state in Fe-O binary melts. However, values of the calculated mass action concentration \( N_{\text{O}} \) of free O are much greater than results of the calculated activity \( a_{\text{R,O}} \) of O in Fe-O binary melts. The converted mass action concentration \( N_{\text{O}}^{\prime} \) of total O relative to ideal O2 at 101,325 Pa as standard state can be obtained through transferring standard state of the calculated mass action concentration \( N_{\text{O}} \) of free O. The converted mass action concentration \( N_{\text{O}}^{\prime} \) of total O or the converted activity \( a_{\text{R,O}}^{\text{AMCT}} \) of O can well be matched with the calculated activity \( a_{\text{R,O}} \) of O in Fe-O binary melts. Although the obtained expression of first-order activity interaction coefficient \( \varepsilon_{\text{O}}^{\text{O}} \) or \( e_{\text{O}}^{\text{O}} \) or \( h_{\text{O}}^{\text{O}} \) by the developed AMCT-\( N_{i} \) model for Fe-O binary melts is different with that based on the calculated activity \( a_{\text{R,O}} \) or \( a_{{{{\%,{ \text O}}}}} \) or \( a_{\text{H,O}} \) of O, they can be applied to accurately predict activity \( a_{\text{R,O}} \) or \( a_{{{{\%, {\text O}}}}} \) or \( a_{\text{H,O}} \) of O in Fe-O binary melts. The molar mixing thermodynamic properties such as molar mixing enthalpy change/entropy change/Gibbs energy change of Fe-O binary melts can reliably be determined from the converted mass action concentration \( N_{\text{O}}^{\prime} \) of O or the converted activity \( a_{\text{R,O}}^{\text{AMCT}} \) of O as well as the calculated mass action concentration \( N_{\text{Fe}} \) of [Fe] by the developed AMCT-\( N_{i} \) model for Fe-O binary melts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat [1] L. S. Darken and R. W. Gurry: The System Iron-Oxygen. I. The Wüstite Field and Related Equilibria. J. Am. Chem. Soc., 1945, vol. 67 (8), pp 1398–1412.CrossRef [1] L. S. Darken and R. W. Gurry: The System Iron-Oxygen. I. The Wüstite Field and Related Equilibria. J. Am. Chem. Soc., 1945, vol. 67 (8), pp 1398–1412.CrossRef
2.
Zurück zum Zitat [2] L. S. Darken and R. W. Gurry: The System Iron-Oxygen. II. Equilibrium and Thermodynamics of Liquid Oxide and Other Phases. J. Am. Chem. Soc., 1946, vol. 68(5), pp. 798–816.CrossRef [2] L. S. Darken and R. W. Gurry: The System Iron-Oxygen. II. Equilibrium and Thermodynamics of Liquid Oxide and Other Phases. J. Am. Chem. Soc., 1946, vol. 68(5), pp. 798–816.CrossRef
3.
Zurück zum Zitat [3] P. J. Spencer and O. Kubaschewski: A Thermodynamic Assessment of the Iron–oxygen System. Calphad, 1978, vol. 2(2), pp. 147–167.CrossRef [3] P. J. Spencer and O. Kubaschewski: A Thermodynamic Assessment of the Iron–oxygen System. Calphad, 1978, vol. 2(2), pp. 147–167.CrossRef
4.
Zurück zum Zitat [4] R. P. Goel, H. H. Kellogg, and J. Larrain: Mathematical Description of the Thermodynamic Properties of the Systems Fe-O and Fe-O-SiO2. Metall. Trans. B, 1980, vol. 11B(1), pp. 107–117.CrossRef [4] R. P. Goel, H. H. Kellogg, and J. Larrain: Mathematical Description of the Thermodynamic Properties of the Systems Fe-O and Fe-O-SiO2. Metall. Trans. B, 1980, vol. 11B(1), pp. 107–117.CrossRef
5.
Zurück zum Zitat [5] B. Björkman: An assessment of the system Fe-O–SiO2 using a structure based model for the liquid silicate. Calphad, 1985, vol. 9(3), pp. 271–282.CrossRef [5] B. Björkman: An assessment of the system Fe-O–SiO2 using a structure based model for the liquid silicate. Calphad, 1985, vol. 9(3), pp. 271–282.CrossRef
6.
Zurück zum Zitat [6] B. Sundman: An Assessment of the Fe-O System. J Phase Equilib., 1991, vol. 12(1), pp. 127–40.CrossRef [6] B. Sundman: An Assessment of the Fe-O System. J Phase Equilib., 1991, vol. 12(1), pp. 127–40.CrossRef
7.
Zurück zum Zitat [7] H. A. Wriedt: The Fe-O (iron–oxygen) system. J Phase Equilib., 1991, vol. 12(2), pp. 170–200.CrossRef [7] H. A. Wriedt: The Fe-O (iron–oxygen) system. J Phase Equilib., 1991, vol. 12(2), pp. 170–200.CrossRef
8.
Zurück zum Zitat [8] M. Kowalski and P. J. Spencer: Thermodynamic Reevaluation of the Cr–O, Fe-O and Ni–O Systems: Remodeling of the Liquid, BCC and FCC Phases. Calphad, 1995, vol. 19(3), pp. 229–243.CrossRef [8] M. Kowalski and P. J. Spencer: Thermodynamic Reevaluation of the Cr–O, Fe-O and Ni–O Systems: Remodeling of the Liquid, BCC and FCC Phases. Calphad, 1995, vol. 19(3), pp. 229–243.CrossRef
9.
Zurück zum Zitat [9] M. Selleby and B. Sundman: A Reassessment of the Ca-Fe-O System. Calphad, 1996, vol. 20(3), pp. 381–392.CrossRef [9] M. Selleby and B. Sundman: A Reassessment of the Ca-Fe-O System. Calphad, 1996, vol. 20(3), pp. 381–392.CrossRef
10.
Zurück zum Zitat [10] S. A. Decterov, E. Jak, P. C. Hayes, and A. D. Pelton: Experimental Study of Phase Equilibria and Thermodynamic Optimization of the Fe-Zn-O System. Metall. Mater. Trans. B, 2001, vol. 32B(4), pp. 643–657.CrossRef [10] S. A. Decterov, E. Jak, P. C. Hayes, and A. D. Pelton: Experimental Study of Phase Equilibria and Thermodynamic Optimization of the Fe-Zn-O System. Metall. Mater. Trans. B, 2001, vol. 32B(4), pp. 643–657.CrossRef
11.
Zurück zum Zitat [11] A. V. Khvan, O. B. Fabrichnaya, G. Savinykh, R. Adam, and H. J. Seifert: Thermodynamic Assessment of the Cu–Fe-O System. J Phase Equilib. Dif., 2011, vol. 32(6), pp. 498–511.CrossRef [11] A. V. Khvan, O. B. Fabrichnaya, G. Savinykh, R. Adam, and H. J. Seifert: Thermodynamic Assessment of the Cu–Fe-O System. J Phase Equilib. Dif., 2011, vol. 32(6), pp. 498–511.CrossRef
12.
Zurück zum Zitat [12] D. Shishin and S. A. Decterov: Critical Assessment and Thermodynamic Modeling of the Cu–O and Cu–O–S Systems. Calphad, 2012, vol. 38, pp. 59–70.CrossRef [12] D. Shishin and S. A. Decterov: Critical Assessment and Thermodynamic Modeling of the Cu–O and Cu–O–S Systems. Calphad, 2012, vol. 38, pp. 59–70.CrossRef
13.
Zurück zum Zitat [13] D. Shishin, T. Hidayat, E. Jak, and S. A. Decterov: Critical Assessment and Thermodynamic Modeling of the Cu–Fe-O System. Calphad, 2013, vol. 41, pp. 160–179.CrossRef [13] D. Shishin, T. Hidayat, E. Jak, and S. A. Decterov: Critical Assessment and Thermodynamic Modeling of the Cu–Fe-O System. Calphad, 2013, vol. 41, pp. 160–179.CrossRef
14.
Zurück zum Zitat [14] T. Hidayat, D. Shishin, E. Jak, and S. A. Decterov: Thermodynamic Reevaluation of the Fe-O System. Calphad, 2015, vol. 48, pp. 131–44.CrossRef [14] T. Hidayat, D. Shishin, E. Jak, and S. A. Decterov: Thermodynamic Reevaluation of the Fe-O System. Calphad, 2015, vol. 48, pp. 131–44.CrossRef
15.
Zurück zum Zitat [15] J. Chipman: Equilibrium in the Oxidation of Liquid Iron by Steam and the Free Energy of Ferrous Oxide in Liquid Steel. J. Am. Chem. Soc., 1933, vol. 55(8), pp. 3131–3139.CrossRef [15] J. Chipman: Equilibrium in the Oxidation of Liquid Iron by Steam and the Free Energy of Ferrous Oxide in Liquid Steel. J. Am. Chem. Soc., 1933, vol. 55(8), pp. 3131–3139.CrossRef
16.
Zurück zum Zitat J. Chipman and M.G. Fontana: Ind. Eng. Chem., 1935, vol. 7(6), pp. 391–95. J. Chipman and M.G. Fontana: Ind. Eng. Chem., 1935, vol. 7(6), pp. 391–95.
17.
Zurück zum Zitat [17] M. G. Fontana and J. Chipman: Trans. Amer. Soc. Metals, 1936, vol.24, pp. 313–333. [17] M. G. Fontana and J. Chipman: Trans. Amer. Soc. Metals, 1936, vol.24, pp. 313–333.
18.
Zurück zum Zitat A.M. Samarin and J. Chipman: Trans. Am. Inst. Min. Met. Eng., 1937, vol. 125, pp. 331–45. A.M. Samarin and J. Chipman: Trans. Am. Inst. Min. Met. Eng., 1937, vol. 125, pp. 331–45.
19.
Zurück zum Zitat [19] C. R. Taylor and J. Chipman: Equilibria of Liquid Iron and Simple Basic and Acid Slags in a Rotating Induction Furnace. Trans. AIME, 1943, vol. 154(6), pp. 228–247. [19] C. R. Taylor and J. Chipman: Equilibria of Liquid Iron and Simple Basic and Acid Slags in a Rotating Induction Furnace. Trans. AIME, 1943, vol. 154(6), pp. 228–247.
20.
Zurück zum Zitat M.N. Dastur and J. Chipman: Trans. Am. Inst. Min. Met. Eng., 1949, vol.185, pp.441–445. M.N. Dastur and J. Chipman: Trans. Am. Inst. Min. Met. Eng., 1949, vol.185, pp.441–445.
21.
Zurück zum Zitat W. A. Fischer and H. vom Ende: . Arch. Eisenhüttenwes, 1950, vol. 21(9+10), pp. 297–304. W. A. Fischer and H. vom Ende: . Arch. Eisenhüttenwes, 1950, vol. 21(9+10), pp. 297–304.
22.
Zurück zum Zitat W. A. Fischer and H. vom Ende: Arch. Eisenhüttenwes, 1952, vol. 23(1+2), pp. 21–33. W. A. Fischer and H. vom Ende: Arch. Eisenhüttenwes, 1952, vol. 23(1+2), pp. 21–33.
23.
Zurück zum Zitat V. V. Averin, A. Y. Polyakov, and A. M. Samarin: Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk., 1955, No. 3, pp. 90. V. V. Averin, A. Y. Polyakov, and A. M. Samarin: Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk., 1955, No. 3, pp. 90.
24.
Zurück zum Zitat [24] H. A. Wriedt and J. Chipman: Oxygen in Liquid Iron–Nickel Alloys. Trans. AIME, 1956, vol. 206(September), pp. 1195–1199. [24] H. A. Wriedt and J. Chipman: Oxygen in Liquid Iron–Nickel Alloys. Trans. AIME, 1956, vol. 206(September), pp. 1195–1199.
25.
Zurück zum Zitat [25] N. A. Gokcen: Equilibria in Reactions of Hydrogen, and Carbon Monoxide with Dissolved Oxygen in Liquid Iron;Equilibrium in Reduction of Ferrous Oxide with Hydrogen, and Solubility of Oxygen in Liquid Iron. Trans. AIME, 1956, vol. 206(November), pp. 1558–1567. [25] N. A. Gokcen: Equilibria in Reactions of Hydrogen, and Carbon Monoxide with Dissolved Oxygen in Liquid Iron;Equilibrium in Reduction of Ferrous Oxide with Hydrogen, and Solubility of Oxygen in Liquid Iron. Trans. AIME, 1956, vol. 206(November), pp. 1558–1567.
26.
Zurück zum Zitat V. V. Averin, A. Y. Polyakov, and A. M. Samarin: Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, 1957, No. 8, pp. 120. V. V. Averin, A. Y. Polyakov, and A. M. Samarin: Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, 1957, No. 8, pp. 120.
27.
Zurück zum Zitat [27] Y. H. Chou: Physical Chemistry of Deoxidation of Steel. Acta Metall. Sin., 1958, vol. 3(3), pp. 238-252. [27] Y. H. Chou: Physical Chemistry of Deoxidation of Steel. Acta Metall. Sin., 1958, vol. 3(3), pp. 238-252.
28.
Zurück zum Zitat [28] T. P. Floridis and J. Chipman: Activity of Oxygen in Liquid Iron Alloys. Trans. Metall. Soc. AIME, 1958, vol. 212(4), pp. 549–553. [28] T. P. Floridis and J. Chipman: Activity of Oxygen in Liquid Iron Alloys. Trans. Metall. Soc. AIME, 1958, vol. 212(4), pp. 549–553.
29.
Zurück zum Zitat K. Gunji and S. Matoba: On the Equilibrium between Mn and O in Molten Iron. Tetsu–to–Hagané, 1959, vol. 45(9), pp. 926–928. K. Gunji and S. Matoba: On the Equilibrium between Mn and O in Molten Iron. Tetsu–to–Hagané, 1959, vol. 45(9), pp. 926–928.
30.
Zurück zum Zitat S. Matoba, K. Gunji, and T. Kuwana: Tetsu–to–Hagané, 1959, vol. 45(12), pp. 1328–1334. S. Matoba, K. Gunji, and T. Kuwana: Tetsu–to–Hagané, 1959, vol. 45(12), pp. 1328–1334.
31.
Zurück zum Zitat [31] H. Sakao and K. Sano: Investigation on the Best Experimental Condition for Equilibrating Hydrogen with Oxygen in Liquid Iron. J. Japan Inst. Met. Mater., 1959, vol. 23(11), pp. 667–70. [31] H. Sakao and K. Sano: Investigation on the Best Experimental Condition for Equilibrating Hydrogen with Oxygen in Liquid Iron. J. Japan Inst. Met. Mater., 1959, vol. 23(11), pp. 667–70.
32.
Zurück zum Zitat H. Schenck and K. H. Gerdom: Arch. Eisenhüttenwes, 1959, vol. 30(8), pp. 451–460. H. Schenck and K. H. Gerdom: Arch. Eisenhüttenwes, 1959, vol. 30(8), pp. 451–460.
33.
Zurück zum Zitat [33] H. Sakao and K. Sano: Determination of the Equilibrium Constant of the Reaction of Hydrogen with Oxygen in Liquid Iron. J. Japan Inst. Met. Mater., 1959, vol. 23(11), pp. 671–674. [33] H. Sakao and K. Sano: Determination of the Equilibrium Constant of the Reaction of Hydrogen with Oxygen in Liquid Iron. J. Japan Inst. Met. Mater., 1959, vol. 23(11), pp. 671–674.
34.
Zurück zum Zitat [34] H. Sakao and K. Sano: Equilibrium between Dissolved Oxygen in Liquid Iron and H2-H2O Gas Mixtures. Trans. Japan. Inst. Metals, 1960, vol. 1(1), pp.38–42.CrossRef [34] H. Sakao and K. Sano: Equilibrium between Dissolved Oxygen in Liquid Iron and H2-H2O Gas Mixtures. Trans. Japan. Inst. Metals, 1960, vol. 1(1), pp.38–42.CrossRef
35.
Zurück zum Zitat [35] H. Sakao and K. Sano: Activity of Oxygen in Liquid Fe–Ni, Fe-Co and Ni–Co Alloys. J. Japan Inst. Met. Mater., 1962, vol. 26(1), pp. 30–34. [35] H. Sakao and K. Sano: Activity of Oxygen in Liquid Fe–Ni, Fe-Co and Ni–Co Alloys. J. Japan Inst. Met. Mater., 1962, vol. 26(1), pp. 30–34.
36.
Zurück zum Zitat [36] H. Sakao and K. Sano: Activity of Oxygen in Liquid Fe–Ni–Co Alloys. J. Japan Inst. Met. Mater., 1962, vol. 26(1), pp. 34–38. [36] H. Sakao and K. Sano: Activity of Oxygen in Liquid Fe–Ni–Co Alloys. J. Japan Inst. Met. Mater., 1962, vol. 26(1), pp. 34–38.
37.
Zurück zum Zitat [37] H. Sakao and K. Sano: Activity and Solubility of Oxygen in Liquid Iron–Chromium Alloy. J. Japan Inst. Met. Mater., 1962, vol. 26(4), pp. 236–240. [37] H. Sakao and K. Sano: Activity and Solubility of Oxygen in Liquid Iron–Chromium Alloy. J. Japan Inst. Met. Mater., 1962, vol. 26(4), pp. 236–240.
38.
Zurück zum Zitat [38] H. Sakao and K. Sano: Activity of Oxygen in Liquid Fe–Ni–Cr Alloys. J. Japan Inst. Met. Mater., 1962, vol. 26(9), pp. 596–600. [38] H. Sakao and K. Sano: Activity of Oxygen in Liquid Fe–Ni–Cr Alloys. J. Japan Inst. Met. Mater., 1962, vol. 26(9), pp. 596–600.
39.
Zurück zum Zitat [39] H. Sakao and K. Sano: Activity of Oxygen in Liquid Fe–Co–Cr and Ni–Co–Cr Alloys. J. Japan Inst. Met. Mater., 1963, vol. 27(4), pp. 147–151. [39] H. Sakao and K. Sano: Activity of Oxygen in Liquid Fe–Co–Cr and Ni–Co–Cr Alloys. J. Japan Inst. Met. Mater., 1963, vol. 27(4), pp. 147–151.
40.
Zurück zum Zitat K. Gunji and S. Matoba: On the Equilibrium between Manganese and Oxygen in Liquid Iron. Tetsu–to–Hagané, 1963, vol. 49(5), pp. 758–764. K. Gunji and S. Matoba: On the Equilibrium between Manganese and Oxygen in Liquid Iron. Tetsu–to–Hagané, 1963, vol. 49(5), pp. 758–764.
41.
Zurück zum Zitat [41] E. S. Tankins, N. A. Gokcen, and G. R. Belton: The Activity and Solubility of Oxygen in Liquid Iron, Nickel, and Cobalt. Trans. Metall. Soc. AIME. 1964, vol. 230, pp. 820–827. [41] E. S. Tankins, N. A. Gokcen, and G. R. Belton: The Activity and Solubility of Oxygen in Liquid Iron, Nickel, and Cobalt. Trans. Metall. Soc. AIME. 1964, vol. 230, pp. 820–827.
42.
Zurück zum Zitat S. Matoba and T. Kuwana: Effects of Nickel, Cobalt, Tungsten, Molybdenum, Chromium and Tin on the Activity Coefficient of Oxygen in Liquid Iron: Activity of oxygen in liquid steel–I. Tetsu–to–Hagané, 1965, vol. 51(2), pp. 163–169 S. Matoba and T. Kuwana: Effects of Nickel, Cobalt, Tungsten, Molybdenum, Chromium and Tin on the Activity Coefficient of Oxygen in Liquid Iron: Activity of oxygen in liquid steel–I. Tetsu–to–Hagané, 1965, vol. 51(2), pp. 163–169
43.
Zurück zum Zitat S. Matoba and T. Kuwana: Activity of Oxygen in Liquid Iron Alloys Containing Several Kinds of Elements Simultaneously Activity of oxygen in liquid steel–II. Tetsu–to–Hagané, 1965, vol. 51(6), pp. 1114–21 S. Matoba and T. Kuwana: Activity of Oxygen in Liquid Iron Alloys Containing Several Kinds of Elements Simultaneously Activity of oxygen in liquid steel–II. Tetsu–to–Hagané, 1965, vol. 51(6), pp. 1114–21
44.
Zurück zum Zitat [44] M. T. Hepworth, R. P. Smith, and E. T. Turkdogan: Permeability, Solubility, and Diffusivity of Oxygen in BCC Iron. Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 1278–1283. [44] M. T. Hepworth, R. P. Smith, and E. T. Turkdogan: Permeability, Solubility, and Diffusivity of Oxygen in BCC Iron. Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 1278–1283.
45.
Zurück zum Zitat [45] K. Schwerdtfeger: Measurements of Oxygen Activity in Iron, Iron-Silicon, Manganese and Iron-Manganese Melts Using Solid Electrolyte Galvanic Cells. Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 1276–1281. [45] K. Schwerdtfeger: Measurements of Oxygen Activity in Iron, Iron-Silicon, Manganese and Iron-Manganese Melts Using Solid Electrolyte Galvanic Cells. Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 1276–1281.
46.
Zurück zum Zitat [46] W. A. Fischer and W. Ackermann: Direct electrochemical determination of the oxygen content of metal I-Investigation in iron, cobalt, nickel, and copper melts. Arch. Eisenhüttenwes, 1966, vol. 37(1), pp. 43–47. [46] W. A. Fischer and W. Ackermann: Direct electrochemical determination of the oxygen content of metal I-Investigation in iron, cobalt, nickel, and copper melts. Arch. Eisenhüttenwes, 1966, vol. 37(1), pp. 43–47.
47.
Zurück zum Zitat J. Chipman: Activity of Interstitial and Nonmetallic Solutes in Dilute Metallic Solution: Lattice Ratio as a Concentration Variable. Trans. Metall. Soc. AIME, (Trans. Metallurgical Society of AIME,) 1967, vol. 239(9), pp. 1332–36. J. Chipman: Activity of Interstitial and Nonmetallic Solutes in Dilute Metallic Solution: Lattice Ratio as a Concentration Variable. Trans. Metall. Soc. AIME, (Trans. Metallurgical Society of AIME,) 1967, vol. 239(9), pp. 1332–36.
48.
Zurück zum Zitat [48] K. Schwerdtfeger: Measurement of Oxygen Activity in Iron, Iron-Silicon, Manganese and Iron-Manganese Melts Using Solid Electrolyte Galvanic Cells. Trans. Met. Soc. AIME, 1967, vol. 239, pp. 1276-1281. [48] K. Schwerdtfeger: Measurement of Oxygen Activity in Iron, Iron-Silicon, Manganese and Iron-Manganese Melts Using Solid Electrolyte Galvanic Cells. Trans. Met. Soc. AIME, 1967, vol. 239, pp. 1276-1281.
49.
Zurück zum Zitat [49] B. F. Belov, I. A. Novochatskij and Y. A. Lobanov: RUSS Met., 1967,(3), pp. 53-62. [49] B. F. Belov, I. A. Novochatskij and Y. A. Lobanov: RUSS Met., 1967,(3), pp. 53-62.
50.
Zurück zum Zitat [50] W. A. Fischer and D. Janke: Electrochemical Determination of the Oxygen Partial Pressure in Steam-hydrogen Mixtures and Iron melts Containing Oxygen. Arch. Eisenhüttenwes, 1968, vol. 39(2), pp. 89–99. [50] W. A. Fischer and D. Janke: Electrochemical Determination of the Oxygen Partial Pressure in Steam-hydrogen Mixtures and Iron melts Containing Oxygen. Arch. Eisenhüttenwes, 1968, vol. 39(2), pp. 89–99.
51.
Zurück zum Zitat [51] H. Schenck, E. Steinmetz, and P. Ch. H. Rhee: Oxygen Activity in the System Iron-oxygen and Possibility of Acting upon It by Means of Added Elements at Steelmaking Temperatures III Action upon the Oxygen Activity by Means of Nickel. Arch. Eisenhüttenwes, 1969, vol. 40(8), pp. 619–620. [51] H. Schenck, E. Steinmetz, and P. Ch. H. Rhee: Oxygen Activity in the System Iron-oxygen and Possibility of Acting upon It by Means of Added Elements at Steelmaking Temperatures III Action upon the Oxygen Activity by Means of Nickel. Arch. Eisenhüttenwes, 1969, vol. 40(8), pp. 619–620.
52.
Zurück zum Zitat [52] W. A. Fischer, D. Janke, and W. Ackermann: Thermodynamics of the Dissolution of Oxygen in Fe-Co, Fe-Ni, Fe-Cu and Co-Ni Melts. Arch. Eisenhüttenwes, 1970, vol. 41(4), pp. 361–367. [52] W. A. Fischer, D. Janke, and W. Ackermann: Thermodynamics of the Dissolution of Oxygen in Fe-Co, Fe-Ni, Fe-Cu and Co-Ni Melts. Arch. Eisenhüttenwes, 1970, vol. 41(4), pp. 361–367.
53.
Zurück zum Zitat [53] W. A. Fischer and G. Pateisky: The Suitability of Solid Metal /Metallic Oxide Mixtures as Reference Potentials in Oxygen Measuring Cell. Arch. Eisenhüttenwes, 1970, vol. 41(7), pp. 661–673. [53] W. A. Fischer and G. Pateisky: The Suitability of Solid Metal /Metallic Oxide Mixtures as Reference Potentials in Oxygen Measuring Cell. Arch. Eisenhüttenwes, 1970, vol. 41(7), pp. 661–673.
54.
Zurück zum Zitat [54] P. A. Distin, S. G. Whiteway, and C. R. Masson: Solubility of Oxygen in Liquid Iron from 1785 °C to 1960°C. A New Technique for the Study of Slag-Metal Equilibria. Can. Metall. Q., 1971, vol. 10(1), pp. 13–18.CrossRef [54] P. A. Distin, S. G. Whiteway, and C. R. Masson: Solubility of Oxygen in Liquid Iron from 1785 °C to 1960°C. A New Technique for the Study of Slag-Metal Equilibria. Can. Metall. Q., 1971, vol. 10(1), pp. 13–18.CrossRef
55.
Zurück zum Zitat [55] G. K. Sigworth and J. F. Elliott: The Thermodynamics of Liquid Dilute Iron Alloys. Metal Science, 1974, vol. 8(1), pp. 298–310.CrossRef [55] G. K. Sigworth and J. F. Elliott: The Thermodynamics of Liquid Dilute Iron Alloys. Metal Science, 1974, vol. 8(1), pp. 298–310.CrossRef
56.
Zurück zum Zitat [56] D. Janke and W. A. Fischer: Thermochemical Data for the Reactions 2Cr + 3/2O2 = Cr2O3, Mo + O2 = MoO2 and 1/2O2 =[O] in Liquid Iron. Arch. Eisenhüttenwes, 1975, vol. 46(12), pp. 755–60. [56] D. Janke and W. A. Fischer: Thermochemical Data for the Reactions 2Cr + 3/2O2 = Cr2O3, Mo + O2 = MoO2 and 1/2O2 =[O] in Liquid Iron. Arch. Eisenhüttenwes, 1975, vol. 46(12), pp. 755–60.
57.
Zurück zum Zitat [57] N. H. Santander and O. Kubaschewski: The Thermodynamics of the Copper–oxygen System. High Temp-High Press., 1975, vol. 7, pp. 573–582. [57] N. H. Santander and O. Kubaschewski: The Thermodynamics of the Copper–oxygen System. High Temp-High Press., 1975, vol. 7, pp. 573–582.
58.
Zurück zum Zitat [58] W. A. Fischer and J. F. Schumacher: The Solubility of Oxygen in Pure Iron from the Melting Point to 2046 °C, Determined Using the Levitation Melting Method. Arch. Eisenhüttenwes., 1978, vol. 49(9), pp. 431–433. [58] W. A. Fischer and J. F. Schumacher: The Solubility of Oxygen in Pure Iron from the Melting Point to 2046 °C, Determined Using the Levitation Melting Method. Arch. Eisenhüttenwes., 1978, vol. 49(9), pp. 431–433.
59.
Zurück zum Zitat [59] T. Chiang and Y. A. Chang: The Activity Coefficient of Oxygen in Binary Liquid Metal Alloys. Metall. Trans. B, 1976, vol. 7B(3), pp. 453–467.CrossRef [59] T. Chiang and Y. A. Chang: The Activity Coefficient of Oxygen in Binary Liquid Metal Alloys. Metall. Trans. B, 1976, vol. 7B(3), pp. 453–467.CrossRef
60.
Zurück zum Zitat [60] R. Y. Lin and Y. A. Chang: The Activity Coefficient of Nitrogen in Binary Liquid Metal Alloys. Metall. Trans. B, 1977, vol. 8B(1), pp. 293–300.CrossRef [60] R. Y. Lin and Y. A. Chang: The Activity Coefficient of Nitrogen in Binary Liquid Metal Alloys. Metall. Trans. B, 1977, vol. 8B(1), pp. 293–300.CrossRef
61.
Zurück zum Zitat [61] S. H. Kuo and Y. A. Chang: On the Relationships Between the Activity Coefficient of Nonmetallic Solutes in Liquid Metals and Binary Alloys. Metall. Trans. B, 1978, vol. 9B(1), pp. 154–156.CrossRef [61] S. H. Kuo and Y. A. Chang: On the Relationships Between the Activity Coefficient of Nonmetallic Solutes in Liquid Metals and Binary Alloys. Metall. Trans. B, 1978, vol. 9B(1), pp. 154–156.CrossRef
62.
Zurück zum Zitat [62] Y.A. Chang and D. C. Hu: On the Gibbs Energy Interaction Parameters of Oxygen and Nitrogen in Liquid Alloys. Metall. Trans. B, 1979, vol. 10B(1), pp. 43–48.CrossRef [62] Y.A. Chang and D. C. Hu: On the Gibbs Energy Interaction Parameters of Oxygen and Nitrogen in Liquid Alloys. Metall. Trans. B, 1979, vol. 10B(1), pp. 43–48.CrossRef
63.
Zurück zum Zitat [63] K. T. Jacob: Solubility and Activity of Oxygen in Liquid Manganese. Metall. Mater. Trans. B, 1981, vol. 12B(4), pp. 675–678.CrossRef [63] K. T. Jacob: Solubility and Activity of Oxygen in Liquid Manganese. Metall. Mater. Trans. B, 1981, vol. 12B(4), pp. 675–678.CrossRef
64.
Zurück zum Zitat [64] H. S. C. O’Neill: Systems Fe-O and Cu–O: Thermodynamic Data for the Equilibria Fe–’FeO’, Fe–Fe3O4, ‘FeO’– Fe3O4, Fe3O4–Fe2O3, Cu–Cu2O, and Cu2O–CuO from EMF Measurements. Amer. Mineral. (American Mineralogist), 1988, vol. 73(5–6), pp. 470–86. [64] H. S. C. O’Neill: Systems Fe-O and Cu–O: Thermodynamic Data for the Equilibria Fe–’FeO’, Fe–Fe3O4, ‘FeO’– Fe3O4, Fe3O4–Fe2O3, Cu–Cu2O, and Cu2O–CuO from EMF Measurements. Amer. Mineral. (American Mineralogist), 1988, vol. 73(5–6), pp. 470–86.
65.
Zurück zum Zitat [65] S. S. Shibaev, P. V. Krasovskii, K. V. Grigorovitch: Solubility of Oxygen in Iron-Silicon Melts in Equilibrium with Silica at 1873 K. ISIJ Int., 2005, vol. 45(9), pp. 1243–47.CrossRef [65] S. S. Shibaev, P. V. Krasovskii, K. V. Grigorovitch: Solubility of Oxygen in Iron-Silicon Melts in Equilibrium with Silica at 1873 K. ISIJ Int., 2005, vol. 45(9), pp. 1243–47.CrossRef
67.
Zurück zum Zitat C. Wagner: Thermodynamics of Alloys, Addison-Wesley, London, England, 1952, pp. 51-53. C. Wagner: Thermodynamics of Alloys, Addison-Wesley, London, England, 1952, pp. 51-53.
68.
Zurück zum Zitat [68] B. Sundman: Modification of the Two-sublattice Model for Liquids. Calphad, 1991, vol. 15(2), pp. 109–119.CrossRef [68] B. Sundman: Modification of the Two-sublattice Model for Liquids. Calphad, 1991, vol. 15(2), pp. 109–119.CrossRef
69.
Zurück zum Zitat [69] J. X. Chen: Handbook of Common Figures, Tables and Data for Steelmaking, 2nd ed., Metallurgical Industry Press. Beijing, 2010. [69] J. X. Chen: Handbook of Common Figures, Tables and Data for Steelmaking, 2nd ed., Metallurgical Industry Press. Beijing, 2010.
70.
Zurück zum Zitat [70] J. Y. Zhang, Metallurgical Physicochemistry. Metallurgical Industry Press, Beijing, 2004. [70] J. Y. Zhang, Metallurgical Physicochemistry. Metallurgical Industry Press, Beijing, 2004.
71.
Zurück zum Zitat [71] X. H. Huang, Principles of Ironmaking and Steelmaking (3rd edition), Metallurgical Industry Press, Beijing, 2005. [71] X. H. Huang, Principles of Ironmaking and Steelmaking (3rd edition), Metallurgical Industry Press, Beijing, 2005.
72.
Zurück zum Zitat [72] S. K. Wei, Thermodynamics of Metallurgical Processes, Science Press, Beijing, 2010. [72] S. K. Wei, Thermodynamics of Metallurgical Processes, Science Press, Beijing, 2010.
73.
Zurück zum Zitat [73] X. M. Yang, J. S. Jiao, R. C. Ding, C. B. Shi, and H. J. Guo: A Thermodynamic Model for Calculating Sulphur Distribution Ratio between CaO–SiO2–MgO–Al2O3 Ironmaking Slags and Carbon Saturated Hot Metal Based on the Ion and Molecule Coexistence Theory. ISIJ Int., 2009, vol. 49(12), pp. 1828–37.CrossRef [73] X. M. Yang, J. S. Jiao, R. C. Ding, C. B. Shi, and H. J. Guo: A Thermodynamic Model for Calculating Sulphur Distribution Ratio between CaO–SiO2–MgO–Al2O3 Ironmaking Slags and Carbon Saturated Hot Metal Based on the Ion and Molecule Coexistence Theory. ISIJ Int., 2009, vol. 49(12), pp. 1828–37.CrossRef
74.
Zurück zum Zitat [74] C. B. Shi, X. M. Yang, J. S. Jiao, C. Li, and H. J. Guo: A Sulphide Capacity Prediction Model of CaO–SiO2–MgO–Al2O3 Ironmaking Slags Based on the Ion and Molecule Coexistence Theory. ISIJ Int., 2010, vol. 50(10), pp. 1362–72.CrossRef [74] C. B. Shi, X. M. Yang, J. S. Jiao, C. Li, and H. J. Guo: A Sulphide Capacity Prediction Model of CaO–SiO2–MgO–Al2O3 Ironmaking Slags Based on the Ion and Molecule Coexistence Theory. ISIJ Int., 2010, vol. 50(10), pp. 1362–72.CrossRef
75.
Zurück zum Zitat [75] X. M. Yang, C. B. Shi, M. Zhang, G. M. Chai, and F. Wang: A Thermodynamic Model of Sulfur Distribution Ratio between CaO–SiO2–MgO–FeO–MnO–Al2O3 Slags and Molten Steel during LF Refining Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2011, vol. 42B(6), pp. 1150–80.CrossRef [75] X. M. Yang, C. B. Shi, M. Zhang, G. M. Chai, and F. Wang: A Thermodynamic Model of Sulfur Distribution Ratio between CaO–SiO2–MgO–FeO–MnO–Al2O3 Slags and Molten Steel during LF Refining Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2011, vol. 42B(6), pp. 1150–80.CrossRef
76.
Zurück zum Zitat [76] X. M. Yang, C. B. Shi, M. Zhang, G. M. Chai, and J. Zhang: A Sulfide Capacity Prediction Model of CaO–SiO2–MgO–FeO–MnO–Al2O3 Slags during LF Refining Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2012, vol. 43B(2), pp. 241–66.CrossRef [76] X. M. Yang, C. B. Shi, M. Zhang, G. M. Chai, and J. Zhang: A Sulfide Capacity Prediction Model of CaO–SiO2–MgO–FeO–MnO–Al2O3 Slags during LF Refining Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2012, vol. 43B(2), pp. 241–66.CrossRef
77.
Zurück zum Zitat [77] X. M. Yang, J. P. Duan, C. B. Shi, M. Zhang, Y. L Zhang, and J. C. Wang: A Thermodynamic Model of Phosphorus Distribution Ratio between CaO–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 Slags and Molten Steel during Top–Bottom Combined Blown Converter Steelmaking Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2011, vol. 42B(4), pp. 738–70.CrossRef [77] X. M. Yang, J. P. Duan, C. B. Shi, M. Zhang, Y. L Zhang, and J. C. Wang: A Thermodynamic Model of Phosphorus Distribution Ratio between CaO–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 Slags and Molten Steel during Top–Bottom Combined Blown Converter Steelmaking Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2011, vol. 42B(4), pp. 738–70.CrossRef
78.
Zurück zum Zitat [78] X. M. Yang, C. B. Shi, M. Zhang, J. P. Duan, and J. Zhang: A Thermodynamic Model of Phosphate Capacity for CaO–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 Slags Equilibrated with Molten Steel during a Top–Bottom Combined Blown Converter Steelmaking Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2011, vol. 42B(5), pp. 951–76.CrossRef [78] X. M. Yang, C. B. Shi, M. Zhang, J. P. Duan, and J. Zhang: A Thermodynamic Model of Phosphate Capacity for CaO–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 Slags Equilibrated with Molten Steel during a Top–Bottom Combined Blown Converter Steelmaking Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2011, vol. 42B(5), pp. 951–76.CrossRef
79.
Zurück zum Zitat [79] X. M. Yang, C. B. Shi, M. Zhang and J. Zhang: A Thermodynamic Model for Prediction of Iron Oxide Activity in Some FeO–Containing Slag Systems. Steel Res. Int., 2012, vol. 83(3), pp. 244–58.CrossRef [79] X. M. Yang, C. B. Shi, M. Zhang and J. Zhang: A Thermodynamic Model for Prediction of Iron Oxide Activity in Some FeO–Containing Slag Systems. Steel Res. Int., 2012, vol. 83(3), pp. 244–58.CrossRef
80.
Zurück zum Zitat [80] X. M. Yang, M. Zhang, J. L. Zhang, P. C. Li, J. Y. Li, and J. Zhang: Representation of Oxidation Ability for Metallurgical Slags Based on the Ion and Molecule Coexistence Theory. Steel Res. Int., 2014, vol. 85(3), pp. 347–75.CrossRef [80] X. M. Yang, M. Zhang, J. L. Zhang, P. C. Li, J. Y. Li, and J. Zhang: Representation of Oxidation Ability for Metallurgical Slags Based on the Ion and Molecule Coexistence Theory. Steel Res. Int., 2014, vol. 85(3), pp. 347–75.CrossRef
81.
Zurück zum Zitat [81] J. Y. Li, M. Zhang, M. Guo, and X. M. Yang: Enrichment Mechanism of Phosphate in CaO–SiO2–FeO–Fe2O3–P2O5 Steelmaking Slags. Metall. Mater. Trans. B, 2014, vol. 45B(5), pp. 1666–82.CrossRef [81] J. Y. Li, M. Zhang, M. Guo, and X. M. Yang: Enrichment Mechanism of Phosphate in CaO–SiO2–FeO–Fe2O3–P2O5 Steelmaking Slags. Metall. Mater. Trans. B, 2014, vol. 45B(5), pp. 1666–82.CrossRef
82.
Zurück zum Zitat [82] X. M. Yang, J. Y. Li, G. M. Chai, M. Zhang, and J. Zhang: Prediction Model of Sulfide Capacity for CaO–FeO–Fe2O3–Al2O3–P2O5 Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2014, vol. 45B(6), pp. 2118–37.CrossRef [82] X. M. Yang, J. Y. Li, G. M. Chai, M. Zhang, and J. Zhang: Prediction Model of Sulfide Capacity for CaO–FeO–Fe2O3–Al2O3–P2O5 Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2014, vol. 45B(6), pp. 2118–37.CrossRef
83.
Zurück zum Zitat [83] J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007, pp. 40–70. [83] J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007, pp. 40–70.
84.
Zurück zum Zitat [84] X. M. Yang, M. Zhang, P. C. Li, J. Y. Li, J. L. Zhang, and J. Zhang: A Thermodynamic Model for Representation Reaction Abilities of Structural Units in Fe–S Binary Melts Based on the Atom–Molecule Coexistence Theory. Metall. Mater. Trans. B, 2012, vol. 43B(6), pp. 1358–87.CrossRef [84] X. M. Yang, M. Zhang, P. C. Li, J. Y. Li, J. L. Zhang, and J. Zhang: A Thermodynamic Model for Representation Reaction Abilities of Structural Units in Fe–S Binary Melts Based on the Atom–Molecule Coexistence Theory. Metall. Mater. Trans. B, 2012, vol. 43B(6), pp. 1358–87.CrossRef
85.
Zurück zum Zitat [85] X. M. Yang, M. Zhang, P. C. Li, J. Y. Li, and J. Zhang: A Thermodynamic Model for Representation Reaction Abilities of Structural Units in Full Composition Range of Fe–Si Binary Melts Based on the Atom–Molecule Coexistence Theory. Steel Res. Int., 2013, vol. 84(8), pp. 784–811.CrossRef [85] X. M. Yang, M. Zhang, P. C. Li, J. Y. Li, and J. Zhang: A Thermodynamic Model for Representation Reaction Abilities of Structural Units in Full Composition Range of Fe–Si Binary Melts Based on the Atom–Molecule Coexistence Theory. Steel Res. Int., 2013, vol. 84(8), pp. 784–811.CrossRef
86.
Zurück zum Zitat [86] X. M. Yang, J. Y. Li, P. C. Li, M. Zhang, and J. Zhang: Determination of Activity Coefficients of Elements and Related Thermodynamic Properties of Fe–Si Binary Melts Based on the Atom–Molecule Coexistence Theory. Steel Res. Int., 2014, vol. 85(2), pp. 164–206.CrossRef [86] X. M. Yang, J. Y. Li, P. C. Li, M. Zhang, and J. Zhang: Determination of Activity Coefficients of Elements and Related Thermodynamic Properties of Fe–Si Binary Melts Based on the Atom–Molecule Coexistence Theory. Steel Res. Int., 2014, vol. 85(2), pp. 164–206.CrossRef
87.
Zurück zum Zitat [87] X. M. Yang, P. C. Li, J. Y. Li, J. L. Zhang, M. Zhang, and J. Zhang: Representation Reaction Abilities of Structural Units and Related Thermodynamic Properties in Fe–P Binary Melts Based on the Atom–Molecule Coexistence Theory, Steel Res. Int., 2014, vol. 85(3), pp. 426–460.CrossRef [87] X. M. Yang, P. C. Li, J. Y. Li, J. L. Zhang, M. Zhang, and J. Zhang: Representation Reaction Abilities of Structural Units and Related Thermodynamic Properties in Fe–P Binary Melts Based on the Atom–Molecule Coexistence Theory, Steel Res. Int., 2014, vol. 85(3), pp. 426–460.CrossRef
88.
Zurück zum Zitat X.M. Yang, J.Y. Li, M.F. Wei, and J. Zhang: A Thermodynamic Model for Representation Reaction Abilities of Structural Units in Fe–C Binary Melts Based on the Atom–Molecule Coexistence Theory. (unpublished 2015). X.M. Yang, J.Y. Li, M.F. Wei, and J. Zhang: A Thermodynamic Model for Representation Reaction Abilities of Structural Units in Fe–C Binary Melts Based on the Atom–Molecule Coexistence Theory. (unpublished 2015).
89.
Zurück zum Zitat X.M. Yang, J.Y. Li, M.F. Wei, and J. Zhang: Determination and Evaluation of Three Kinds of Activity Coefficients of Carbon and Related Mixing Thermodynamic Properties of Fe–C Binary Melts Based on the Atom–Molecule Coexistence Theory. (unpublished 2015). X.M. Yang, J.Y. Li, M.F. Wei, and J. Zhang: Determination and Evaluation of Three Kinds of Activity Coefficients of Carbon and Related Mixing Thermodynamic Properties of Fe–C Binary Melts Based on the Atom–Molecule Coexistence Theory. (unpublished 2015).
90.
Zurück zum Zitat [90] The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, NY, 1988. [90] The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, NY, 1988.
91.
Zurück zum Zitat [91] R. Zhu, Y. Q. Qiu, and J. Zhang: Calculation Model of Mass Action Concentrations for Fe-C-O Metallic Melts. J. Univ. Sci. Tech. Beijing, 1996, vol. 18(5), pp. 414-418. [91] R. Zhu, Y. Q. Qiu, and J. Zhang: Calculation Model of Mass Action Concentrations for Fe-C-O Metallic Melts. J. Univ. Sci. Tech. Beijing, 1996, vol. 18(5), pp. 414-418.
92.
Zurück zum Zitat [92] S. K. Wei: Application of Activity in Metallurgical Physicochemistry. China Industry Press, Beijing, China, 1964. [92] S. K. Wei: Application of Activity in Metallurgical Physicochemistry. China Industry Press, Beijing, China, 1964.
Metadaten
Titel
Thermodynamic Evaluation of Reaction Abilities of Structural Units in Fe-O Binary Melts Based on the Atom–Molecule Coexistence Theory
verfasst von
Xue-min Yang
Jin-yan Li
Meng-fang Wei
Jian Zhang
Publikationsdatum
24.11.2015
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 1/2016
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-015-0482-z

Weitere Artikel der Ausgabe 1/2016

Metallurgical and Materials Transactions B 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.