Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 6/2019

04.09.2019

Microstructure and Properties of Inconel 718 Fabricated by Directed Energy Deposition with In-Situ Ultrasonic Impact Peening

verfasst von: Yachao Wang, Jing Shi

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many inherent issues, such as the detrimental residual stress, columnar grains with anisotropy, and weak mechanical properties, have severely impeded the adoption of metal additive manufacturing (AM) techniques including powder bed fusion and directed energy deposition (DED) processes. In this study, a hybrid AM process that consists of layer-wise laser metal deposition (i.e., a DED process) and in-situ ultrasonic impact peening (UIP) was applied to obtain Inconel 718 superalloy workpieces. Also, for further property enhancement, a post-heat treatment was applied to the deposited material obtained by the hybrid AM process. Scanning electron microscopy and transmission electron microscope were used to investigate the microstructure morphology and reveal the underlying strengthening mechanism. Electron backscatter diffraction was employed to quantitatively study the microstructure resulted from the hybrid AM process and the post-heat treatment. The profile of residual stress along the depth direction was obtained through X-ray diffraction. The results demonstrate that this hybrid AM process is capable of producing high-quality metal parts with significantly refined microstructure, and beneficial compressive residual stress along the depth into surface. Severe plastic strains are introduced by UIP, and the resulted mechanical twinning and dynamic recrystallization play an important role in refining microstructure. The material microstructure is further refined down to 100 µm, and the texture anisotropy is significantly diminished after solution treatment at 980 °C for 1 hour. Under the as-built condition, in-situ ultrasonic peening alters the residual stress component from a tensile state to an overall compressive state with a maximum value of − 190 MPa within the range of measurement depth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. E. Frazier: Journal of Materials Engineering and Performance, 2014, Vol. 23, PP. 1917–1928.CrossRef W. E. Frazier: Journal of Materials Engineering and Performance, 2014, Vol. 23, PP. 1917–1928.CrossRef
2.
Zurück zum Zitat J. J. Lewandowski, and M. Seifi: Annual Review of Materials Research, 2016, Vol. 46, PP. 151–186.CrossRef J. J. Lewandowski, and M. Seifi: Annual Review of Materials Research, 2016, Vol. 46, PP. 151–186.CrossRef
3.
Zurück zum Zitat D.M. Jacobson and G. Bennett: in Solid Freeform Fabrication Symposium, Austin, TX, Aug, 2006, 2006, pp. 14–16. D.M. Jacobson and G. Bennett: in Solid Freeform Fabrication Symposium, Austin, TX, Aug, 2006, 2006, pp. 14–16.
4.
Zurück zum Zitat G. Strano, L. Hao, R. M. Everson, and K. E. Evans: Journal of Materials Processing Technology, 2013, Vol. 213, PP. 589–597.CrossRef G. Strano, L. Hao, R. M. Everson, and K. E. Evans: Journal of Materials Processing Technology, 2013, Vol. 213, PP. 589–597.CrossRef
5.
Zurück zum Zitat P. Mercelis, and J.-P. Kruth: Rapid Prototyping Journal, 2006, Vol. 12, PP. 254–265.CrossRef P. Mercelis, and J.-P. Kruth: Rapid Prototyping Journal, 2006, Vol. 12, PP. 254–265.CrossRef
6.
Zurück zum Zitat G. P. Dinda, A. K. Dasgupta, and J. Mazumder: Materials Science and Engineering: A, 2009, Vol. 509, PP. 98–104.CrossRef G. P. Dinda, A. K. Dasgupta, and J. Mazumder: Materials Science and Engineering: A, 2009, Vol. 509, PP. 98–104.CrossRef
7.
Zurück zum Zitat H. Qi, M. Azer, and A. Ritter: Metallurgical and Materials Transactions A, 2009, Vol. 40, PP. 2410–2422.CrossRef H. Qi, M. Azer, and A. Ritter: Metallurgical and Materials Transactions A, 2009, Vol. 40, PP. 2410–2422.CrossRef
8.
Zurück zum Zitat D. H. Smith, J. Bicknell, L. Jorgensen, B. M. Patterson, N. L. Cordes, I. Tsukrov, and M. Knezevic: Materials Characterization, 2016, Vol. 113, PP. 1–9.CrossRef D. H. Smith, J. Bicknell, L. Jorgensen, B. M. Patterson, N. L. Cordes, I. Tsukrov, and M. Knezevic: Materials Characterization, 2016, Vol. 113, PP. 1–9.CrossRef
9.
Zurück zum Zitat C. Sanz, and V. G. Navas: Journal of Materials Processing Technology, 2013, Vol. 213, PP. 2126–2136.CrossRef C. Sanz, and V. G. Navas: Journal of Materials Processing Technology, 2013, Vol. 213, PP. 2126–2136.CrossRef
10.
Zurück zum Zitat B. AlMangour, and J.-M. Yang: Materials & Design, 2016, Vol. 110, PP. 914–924.CrossRef B. AlMangour, and J.-M. Yang: Materials & Design, 2016, Vol. 110, PP. 914–924.CrossRef
11.
12.
Zurück zum Zitat N. E. Uzan, S. Ramati, R. Shneck, N. Frage, and O. Yeheskel: Additive Manufacturing, 2018, Vol. 21, PP. 458–464.CrossRef N. E. Uzan, S. Ramati, R. Shneck, N. Frage, and O. Yeheskel: Additive Manufacturing, 2018, Vol. 21, PP. 458–464.CrossRef
13.
Zurück zum Zitat W. Guo, R. Sun, B. Song, Y. Zhu, F. Li, Z. Che, B. Li, C. Guo, L. Liu, and P. Peng: Surface and Coatings Technology, 2018, Vol. 349, PP. 503–510.CrossRef W. Guo, R. Sun, B. Song, Y. Zhu, F. Li, Z. Che, B. Li, C. Guo, L. Liu, and P. Peng: Surface and Coatings Technology, 2018, Vol. 349, PP. 503–510.CrossRef
14.
Zurück zum Zitat S. Shiva, I.A. Palani, C.P. Paul, and B. Singh: Application of Lasers in Manufacturing, Springer, Berlin, 2019, pp. 1–20.CrossRef S. Shiva, I.A. Palani, C.P. Paul, and B. Singh: Application of Lasers in Manufacturing, Springer, Berlin, 2019, pp. 1–20.CrossRef
15.
Zurück zum Zitat J. Donoghue, A. A. Antonysamy, F. Martina, P. A. Colegrove, S. W. Williams, and P. B. Prangnell: Materials Characterization, 2016, Vol. 114, PP. 103–114.CrossRef J. Donoghue, A. A. Antonysamy, F. Martina, P. A. Colegrove, S. W. Williams, and P. B. Prangnell: Materials Characterization, 2016, Vol. 114, PP. 103–114.CrossRef
16.
Zurück zum Zitat W. Zhao, G. C. Zha, M. Z. Xi, and S. Y. Gao: Journal of Materials Engineering and Performance, 2018, Vol. 27, PP. 1746–1752.CrossRef W. Zhao, G. C. Zha, M. Z. Xi, and S. Y. Gao: Journal of Materials Engineering and Performance, 2018, Vol. 27, PP. 1746–1752.CrossRef
17.
Zurück zum Zitat N. Kalentics, E. Boillat, P. Peyre, C. Gorny, C. Kenel, C. Leinenbach, J. Jhabvala, and R. E. Logé: Materials & Design, 2017, Vol. 130, PP. 350–356.CrossRef N. Kalentics, E. Boillat, P. Peyre, C. Gorny, C. Kenel, C. Leinenbach, J. Jhabvala, and R. E. Logé: Materials & Design, 2017, Vol. 130, PP. 350–356.CrossRef
19.
Zurück zum Zitat J. Gale, and A. Achuhan: Rapid Prototyping Journal, 2017, Vol. 23, PP. 1185–1194.CrossRef J. Gale, and A. Achuhan: Rapid Prototyping Journal, 2017, Vol. 23, PP. 1185–1194.CrossRef
20.
Zurück zum Zitat G. Çam, and M. Koçak: International Materials Reviews, 1998, Vol. 43, PP. 1–44.CrossRef G. Çam, and M. Koçak: International Materials Reviews, 1998, Vol. 43, PP. 1–44.CrossRef
21.
Zurück zum Zitat C. Slama, C. Servant, and G. Cizeron: Journal of Materials Research, 1997, Vol. 12, PP. 2298–2316.CrossRef C. Slama, C. Servant, and G. Cizeron: Journal of Materials Research, 1997, Vol. 12, PP. 2298–2316.CrossRef
22.
Zurück zum Zitat P. L. Blackwell: Journal of Materials Processing Technology, 2005, Vol. 170, PP. 240–246.CrossRef P. L. Blackwell: Journal of Materials Processing Technology, 2005, Vol. 170, PP. 240–246.CrossRef
23.
Zurück zum Zitat A. Thomas, M. El-Wahabi, J. M. Cabrera, and J. M. Prado: Journal of Materials Processing Technology, 2006, Vol. 177, PP. 469–472.CrossRef A. Thomas, M. El-Wahabi, J. M. Cabrera, and J. M. Prado: Journal of Materials Processing Technology, 2006, Vol. 177, PP. 469–472.CrossRef
24.
Zurück zum Zitat J. J. Schirra, R. H. Caless, and R. W. Hatala: Superalloys, 1991, Vol. 718, PP. 375–388.CrossRef J. J. Schirra, R. H. Caless, and R. W. Hatala: Superalloys, 1991, Vol. 718, PP. 375–388.CrossRef
26.
Zurück zum Zitat S. Prabhakaran, A. Kulkarni, G. Vasanth, S. Kalainathan, P. Shukla, and V. K. Vasudevan: Applied Surface Science, 2018, Vol. 428, PP. 17–30.CrossRef S. Prabhakaran, A. Kulkarni, G. Vasanth, S. Kalainathan, P. Shukla, and V. K. Vasudevan: Applied Surface Science, 2018, Vol. 428, PP. 17–30.CrossRef
27.
Zurück zum Zitat J. Z. Lu, K. Y. Luo, Y. K. Zhang, G. F. Sun, Y. Y. Gu, J. Z. Zhou, X. D. Ren, X. C. Zhang, L. F. Zhang, and K. M. Chen: Acta Materialia, 2010, Vol. 58, PP. 5354–5362.CrossRef J. Z. Lu, K. Y. Luo, Y. K. Zhang, G. F. Sun, Y. Y. Gu, J. Z. Zhou, X. D. Ren, X. C. Zhang, L. F. Zhang, and K. M. Chen: Acta Materialia, 2010, Vol. 58, PP. 5354–5362.CrossRef
28.
Zurück zum Zitat H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, and K. Lu: Acta Materialia, 2003, Vol. 51, PP. 1871–1881.CrossRef H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, and K. Lu: Acta Materialia, 2003, Vol. 51, PP. 1871–1881.CrossRef
29.
Zurück zum Zitat M. Wang, R. Xin, B. Wang, and Q. Liu: Materials Science and Engineering: A, 2011, Vol. 528, PP. 2941–2951.CrossRef M. Wang, R. Xin, B. Wang, and Q. Liu: Materials Science and Engineering: A, 2011, Vol. 528, PP. 2941–2951.CrossRef
30.
Zurück zum Zitat X. Wang, E. Brünger, and G. Gottstein: Scripta Materialia, 2002, Vol. 46, PP. 875–880.CrossRef X. Wang, E. Brünger, and G. Gottstein: Scripta Materialia, 2002, Vol. 46, PP. 875–880.CrossRef
31.
Zurück zum Zitat R. P. Singh, J. M. Hyzak, T. E. Howson, and R. R. Biederman: Superalloys, 1991, Vol. 718, PP. 205–215.CrossRef R. P. Singh, J. M. Hyzak, T. E. Howson, and R. R. Biederman: Superalloys, 1991, Vol. 718, PP. 205–215.CrossRef
33.
Zurück zum Zitat J. F. Radavich: in Conference proceedings on superalloy, 1989, 1989, vol. 718, pp. 229–40. J. F. Radavich: in Conference proceedings on superalloy, 1989, 1989, vol. 718, pp. 229–40.
Metadaten
Titel
Microstructure and Properties of Inconel 718 Fabricated by Directed Energy Deposition with In-Situ Ultrasonic Impact Peening
verfasst von
Yachao Wang
Jing Shi
Publikationsdatum
04.09.2019
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 6/2019
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-019-01672-3

Weitere Artikel der Ausgabe 6/2019

Metallurgical and Materials Transactions B 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.