Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 2/2022

20.01.2022 | Original Article

Effects of Refining Slag on Transformation and Removal of Inclusions in Type 430 Stainless Steel

verfasst von: Hua Zhang, Yongbo Peng, Song Zhang, Chengsong Liu, Rijin Cheng, Hongwei Ni

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Laboratory “steel–slag” equilibrium experiments at 1873 K (1600 °C) were conducted to study the effects of basicity (CaO/SiO2) and the C/A ratio (CaO/Al2O3) in CaO–SiO2–Al2O3–MgO slag on the inclusions in Si–Mn-deoxidized 430 stainless steels. A thermodynamic analysis was performed to predict the transformation of the chemical composition of the inclusions. A mathematical model was introduced to describe the inclusion behavior at the liquid “steel–slag” interface and predict the removal of oxide inclusions during slag refining. The results showed that increasing slag basicity (R) from 1.0 to 5.0 lowered the total oxygen content (T.O.) from 0.0070 to 0.0038 mass pct and dissolved [O] content in steel from 0.0013 to 0.0008 mass pct, and led to the formation of inclusions with high Al2O3 content, while increasing the C/A ratio from 0.7 to 2.5 had little effect on the steel cleanliness. The values of both \({\text{log}}{{X}}_{{\text{Al}}_{2}{{\text{O}}}_{3}}^{\text{i}}\) and \({\text{log}}\frac{{X}_{{\text{Cr}}_{2}{{\text{O}}}_{3}}^{\text{i}}\cdot{X}_{{\text{Si}}{\text{O}}_{2}}^{\text{i}}}{{X}_{{\text{Al}}_{2}{{\text{O}}}_{3}}^{\text{i}}\cdot{X}_{\text{MnO}}^{\text{i}}}\) were positively correlated with that of log \(\frac{{a}_{{\text{Al}}_{2}{{\text{O}}}_{3}}^{\text{s}}\cdot{a}_{\text{MnO}}^{\text{s}}}{{a}_{{\text{Si}}{\text{O}}_{2}}^{\text{s}}\cdot{{a}}_{{\text{Cr}}_{2}{{\text{O}}}_{3}}^{\text{s}}}\), indicating that the activity ratio of the slag components directly affected the concentration of the inclusions. The separation was less than 90 pct for all inclusions with a diameter of 5 μm for different refining slags. The experimental results and prediction of the mathematical model for inclusion removal after slag refining were in reasonable agreement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L.F. Zhang and B.G. Thomas: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 733–61.CrossRef L.F. Zhang and B.G. Thomas: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 733–61.CrossRef
2.
Zurück zum Zitat P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, H.C. Zhu, Z.Z. Liu, and T. He: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2210–23.CrossRef P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, H.C. Zhu, Z.Z. Liu, and T. He: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2210–23.CrossRef
3.
Zurück zum Zitat L.F. Zhang: Non-metallic Inclusions in Steel: Fundamentals, Metallurgical Industry Press, Beijing, 2019. L.F. Zhang: Non-metallic Inclusions in Steel: Fundamentals, Metallurgical Industry Press, Beijing, 2019.
4.
Zurück zum Zitat K. Kirihara: Kobelco Technol. Rev., 2011, vol. 30, pp. 62–65. K. Kirihara: Kobelco Technol. Rev., 2011, vol. 30, pp. 62–65.
5.
Zurück zum Zitat S.H. Chen, M. Jiang, X.F. He, and X.H. Wang: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 490–98.CrossRef S.H. Chen, M. Jiang, X.F. He, and X.H. Wang: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 490–98.CrossRef
6.
Zurück zum Zitat H.L. Yang, J.S. Ye, X.L. Wu, Y.S. Peng, Y. Fang, and X.B. Zhao: ISIJ Int., 2016, vol. 56, pp. 108–15.CrossRef H.L. Yang, J.S. Ye, X.L. Wu, Y.S. Peng, Y. Fang, and X.B. Zhao: ISIJ Int., 2016, vol. 56, pp. 108–15.CrossRef
7.
Zurück zum Zitat J.H. Park and Y.B. Kang: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 791–97.CrossRef J.H. Park and Y.B. Kang: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 791–97.CrossRef
8.
Zurück zum Zitat C.S. Liu, Y. Kacar, B. Webler, and P.C. Pistorius: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2837–41.CrossRef C.S. Liu, Y. Kacar, B. Webler, and P.C. Pistorius: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2837–41.CrossRef
9.
Zurück zum Zitat H.L. Yang, J.S. Ye, X.L. Wu, Y.S. Peng, Y. Fang, and X.B. Zhao: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1435–44.CrossRef H.L. Yang, J.S. Ye, X.L. Wu, Y.S. Peng, Y. Fang, and X.B. Zhao: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1435–44.CrossRef
10.
Zurück zum Zitat H. Zhang, C.S. Liu, Q. Lin, B. Wang, X.Q. Liu, and Q. Fang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 459–70.CrossRef H. Zhang, C.S. Liu, Q. Lin, B. Wang, X.Q. Liu, and Q. Fang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 459–70.CrossRef
11.
Zurück zum Zitat C.S. Liu, D. Kumar, B.A. Webler, and P.C. Pistorius: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 529–42.CrossRef C.S. Liu, D. Kumar, B.A. Webler, and P.C. Pistorius: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 529–42.CrossRef
12.
Zurück zum Zitat Y. Ren, L.F. Zhang, W. Fang, S.J. Shao, J. Yang, and W.D. Mao: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1024–34.CrossRef Y. Ren, L.F. Zhang, W. Fang, S.J. Shao, J. Yang, and W.D. Mao: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1024–34.CrossRef
13.
Zurück zum Zitat E.L. Bjørnstad and G. Tranell: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 1392–412.CrossRef E.L. Bjørnstad and G. Tranell: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 1392–412.CrossRef
14.
15.
Zurück zum Zitat J.S. Park and J.H. Park: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 953–60.CrossRef J.S. Park and J.H. Park: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 953–60.CrossRef
16.
17.
Zurück zum Zitat W. Liu, J. Liu, H.X. Zhao, S.F. Yang, and J.S. Li: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2430–40.CrossRef W. Liu, J. Liu, H.X. Zhao, S.F. Yang, and J.S. Li: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2430–40.CrossRef
18.
Zurück zum Zitat J.H. Park and L.F. Zhang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2453–82.CrossRef J.H. Park and L.F. Zhang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2453–82.CrossRef
19.
Zurück zum Zitat K. Nakajima and K. Okamura: Proceedings of the 4th Int. Conf. on Molten Slags and Fluxes, ISIJ, Sendai, 1992, pp. 505–510. K. Nakajima and K. Okamura: Proceedings of the 4th Int. Conf. on Molten Slags and Fluxes, ISIJ, Sendai, 1992, pp. 505–510.
20.
Zurück zum Zitat J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1838–47.CrossRef J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1838–47.CrossRef
21.
Zurück zum Zitat J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1597–606.CrossRef J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1597–606.CrossRef
22.
Zurück zum Zitat J. Wikstrom, K. Nakajima, L. Jonsson, and P. Jönsson: Steel Res. Int., 2008, vol. 79, pp. 826–34.CrossRef J. Wikstrom, K. Nakajima, L. Jonsson, and P. Jönsson: Steel Res. Int., 2008, vol. 79, pp. 826–34.CrossRef
23.
Zurück zum Zitat C. Liu, S.F. Yang, J.S. Li, L.B. Zhu, and X.G. Li: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1882–92.CrossRef C. Liu, S.F. Yang, J.S. Li, L.B. Zhu, and X.G. Li: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1882–92.CrossRef
24.
Zurück zum Zitat S.F. Yang, J.S. Li, C. Liu, L.Y. Sun, and H.B. Yang: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 2453–63.CrossRef S.F. Yang, J.S. Li, C. Liu, L.Y. Sun, and H.B. Yang: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 2453–63.CrossRef
25.
Zurück zum Zitat K.H. Kim, S.J. Kim, H. Shibata, and S.Y. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2144–53.CrossRef K.H. Kim, S.J. Kim, H. Shibata, and S.Y. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2144–53.CrossRef
26.
Zurück zum Zitat H.Y. Tang, Y. Wang, G.H. Wu, P. Lan, and J.Q. Zhang: J. Iron Steel Res. Int., 2017, vol. 24, pp. 879–87.CrossRef H.Y. Tang, Y. Wang, G.H. Wu, P. Lan, and J.Q. Zhang: J. Iron Steel Res. Int., 2017, vol. 24, pp. 879–87.CrossRef
27.
Zurück zum Zitat K. Geels, D.B. Fowler, W. Kopp, and M. Rückert: Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis and Hardness Testing, ASTM International, West Conshohocken, PA, 2007. K. Geels, D.B. Fowler, W. Kopp, and M. Rückert: Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis and Hardness Testing, ASTM International, West Conshohocken, PA, 2007.
28.
Zurück zum Zitat E.E. Underwood: Quantitative Stereology for Microstructural Analysis, Springer, Boston, MA, 1973.CrossRef E.E. Underwood: Quantitative Stereology for Microstructural Analysis, Springer, Boston, MA, 1973.CrossRef
29.
30.
Zurück zum Zitat M. Hino and K. Ito: Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, 2010. M. Hino and K. Ito: Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, 2010.
31.
Zurück zum Zitat T. Itoh, T. Nagasaka, and M. Hino: ISIJ Int., 2000, vol. 40, pp. 1051–58.CrossRef T. Itoh, T. Nagasaka, and M. Hino: ISIJ Int., 2000, vol. 40, pp. 1051–58.CrossRef
32.
33.
Zurück zum Zitat K. Suzuki, S. Ban-ya, and M. Hino: ISIJ Int., 2001, vol. 41, pp. 813–17.CrossRef K. Suzuki, S. Ban-ya, and M. Hino: ISIJ Int., 2001, vol. 41, pp. 813–17.CrossRef
34.
Zurück zum Zitat K. Mizuno, H. Todoroki, M. Noda, and T. Tohge: Iron Steelmak., 2001, vol. 28, pp. 93–101. K. Mizuno, H. Todoroki, M. Noda, and T. Tohge: Iron Steelmak., 2001, vol. 28, pp. 93–101.
35.
Zurück zum Zitat J.W. Kim, S.K. Kim, D.S. Kim, Y.D. Lee, and P.K. Yang: ISIJ Int., 1996, vol. 36, pp. S140–43.CrossRef J.W. Kim, S.K. Kim, D.S. Kim, Y.D. Lee, and P.K. Yang: ISIJ Int., 1996, vol. 36, pp. S140–43.CrossRef
36.
Zurück zum Zitat M. Abramowitz and I.A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U.S. Government Printing Office, Washington D.C., 1964. M. Abramowitz and I.A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U.S. Government Printing Office, Washington D.C., 1964.
37.
Zurück zum Zitat K.C. Mills: Slags Model (ed 1.07), National Physical Laboratory, UK, 1991. K.C. Mills: Slags Model (ed 1.07), National Physical Laboratory, UK, 1991.
38.
39.
Metadaten
Titel
Effects of Refining Slag on Transformation and Removal of Inclusions in Type 430 Stainless Steel
verfasst von
Hua Zhang
Yongbo Peng
Song Zhang
Chengsong Liu
Rijin Cheng
Hongwei Ni
Publikationsdatum
20.01.2022
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 2/2022
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-021-02420-2

Weitere Artikel der Ausgabe 2/2022

Metallurgical and Materials Transactions B 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.