Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2015

01.09.2015

Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining

verfasst von: Chander Prakash, H. K. Kansal, B. S. Pabla, Sanjeev Puri

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Herein, a β-Ti-based implant was subjected to powder mixed electric discharge machining (PMEDM) for surface modification to produce a novel biomimetic nanoporous bioceramic surface. The microstructure, surface topography, and phase composition of the non-machined and machined (PMEDMed) surfaces were investigated using field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction. The microhardness of the surfaces was measured on a Vickers hardness tester. The corrosion resistance of the surfaces was evaluated via potentiodynamic polarization measurements in simulated body fluid. The application of PMEDM not only altered the surface chemistry, but also imparted the surface with a nanoporous topography or a natural bone-like surface structure. The characterization results confirmed that the alloyed layer mainly comprised bioceramic oxides and carbide phases (TiO2, Nb2O5, ZrO2, SiO2, TiC, NbC, SiC). The microhardness of PMEDMed surface was twofold higher than that of the base material (β-Ti alloy), primarily because of the formation of the hard carbide phases on the machined layer. Electrochemical analysis revealed that PMEDMed surface featured insulative and protective properties and thus displayed higher corrosion resistance ability when compared with the non-machined surface. This result was attributed to the formation of the bioceramic oxides on the machined surface. Additionally, the in vitro biocompatibility of the surfaces was evaluated using human osteoblastic cell line MG-63. PMEDMed surface with a micro-, sub-micro-, and nano-structured topography exhibited bioactivity and improved biocompatibility relative to β-Ti surface. Furthermore, PMEDMed surface enabled better adhesion and growth of MG-63 when compared with the non-machined substrate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti-Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater Sci., 2009, 54(3), p 397–425CrossRef M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti-Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater Sci., 2009, 54(3), p 397–425CrossRef
2.
Zurück zum Zitat Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, New Developments of Ti-Based Alloys for Biomedical Applications, Materials, 2014, 7(3), p 1709–1800CrossRef Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, New Developments of Ti-Based Alloys for Biomedical Applications, Materials, 2014, 7(3), p 1709–1800CrossRef
3.
Zurück zum Zitat S. Minagar, C.C. Berndt, J. Wang, E. Ivanova, and C. Wen, A Review of the Application of Anodization for the Fabrication of Nanotubes on Metal Implant Surfaces, Acta Biomater., 2012, 8(8), p 2875–2888CrossRef S. Minagar, C.C. Berndt, J. Wang, E. Ivanova, and C. Wen, A Review of the Application of Anodization for the Fabrication of Nanotubes on Metal Implant Surfaces, Acta Biomater., 2012, 8(8), p 2875–2888CrossRef
4.
Zurück zum Zitat M. Niinomi, M. Nakai, and J. Hieda, Development of New Metallic Alloys for Biomedical Applications, Acta Biomater., 2012, 8(11), p 3888–3903CrossRef M. Niinomi, M. Nakai, and J. Hieda, Development of New Metallic Alloys for Biomedical Applications, Acta Biomater., 2012, 8(11), p 3888–3903CrossRef
5.
Zurück zum Zitat A. Vladescu, V. Braic, M. Balaceanu, M. Braic, A.C. Parau, S. Ivanescu, and C. Fanara, Characterization of the Ti–10Nb–10Zr–5Ta Alloy for Biomedical Applications. Part 1: Microstructure, Mechanical Properties, and Corrosion Resistance, J. Mater. Eng. Perform., 2013, 22(8), p 2389–2397 A. Vladescu, V. Braic, M. Balaceanu, M. Braic, A.C. Parau, S. Ivanescu, and C. Fanara, Characterization of the Ti–10Nb–10Zr–5Ta Alloy for Biomedical Applications. Part 1: Microstructure, Mechanical Properties, and Corrosion Resistance, J. Mater. Eng. Perform., 2013, 22(8), p 2389–2397
6.
Zurück zum Zitat M. Lai, Y. Gao, B. Yuan, and M. Zhu, Effect of Pore Structure Regulation on the Properties of Porous TiNbZr Shape Memory Alloys for Biomedical Application, J. Mater. Eng. Perform., 2015, 24(1), p 136–142CrossRef M. Lai, Y. Gao, B. Yuan, and M. Zhu, Effect of Pore Structure Regulation on the Properties of Porous TiNbZr Shape Memory Alloys for Biomedical Application, J. Mater. Eng. Perform., 2015, 24(1), p 136–142CrossRef
7.
Zurück zum Zitat Y. Sasikumar, M. Karthega, and N. Rajendran, In Vitro Bioactivity of Surface-Modified β-Ti Alloy for Biomedical Applications, J. Mater. Eng. Perform., 2011, 20(7), p 1271–1277CrossRef Y. Sasikumar, M. Karthega, and N. Rajendran, In Vitro Bioactivity of Surface-Modified β-Ti Alloy for Biomedical Applications, J. Mater. Eng. Perform., 2011, 20(7), p 1271–1277CrossRef
8.
Zurück zum Zitat X. Liua, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. Rep., 2004, 47, p 49–121CrossRef X. Liua, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. Rep., 2004, 47, p 49–121CrossRef
9.
Zurück zum Zitat Z. Ur Rahman, L. Pompa, and W. Haider, Influence of Electropolishing and Magnetoelectro Polishing on Corrosion and Biocompatibility of Titanium Implants, J. Mater. Eng. Perform., 2014, 23(11), p 3907–3915CrossRef Z. Ur Rahman, L. Pompa, and W. Haider, Influence of Electropolishing and Magnetoelectro Polishing on Corrosion and Biocompatibility of Titanium Implants, J. Mater. Eng. Perform., 2014, 23(11), p 3907–3915CrossRef
10.
Zurück zum Zitat A.L.L. Barboza, K.W. Kang, R.D. Bonetto, C.L. Llorente, P.D. Bilmes, and C.A. Gervasi, Blasting and Passivation Treatments for ASTM F139 Stainless Steel for Biomedical Applications: Effects on Surface Roughness, Hardening, and Localized Corrosion, J. Mater. Eng. Perform., 2015, 24(1), p 175–184CrossRef A.L.L. Barboza, K.W. Kang, R.D. Bonetto, C.L. Llorente, P.D. Bilmes, and C.A. Gervasi, Blasting and Passivation Treatments for ASTM F139 Stainless Steel for Biomedical Applications: Effects on Surface Roughness, Hardening, and Localized Corrosion, J. Mater. Eng. Perform., 2015, 24(1), p 175–184CrossRef
11.
Zurück zum Zitat Y. Sasikumar and N. Rajendran, Surface Modification and In Vitro Characterization of Cp-Ti and Ti-5Al-2Nb-1Ta Alloy in Simulated Body Fluid, J. Mater. Eng. Perform., 2012, 21(10), p 2177–2187CrossRef Y. Sasikumar and N. Rajendran, Surface Modification and In Vitro Characterization of Cp-Ti and Ti-5Al-2Nb-1Ta Alloy in Simulated Body Fluid, J. Mater. Eng. Perform., 2012, 21(10), p 2177–2187CrossRef
12.
Zurück zum Zitat X.B. Liu, X.J. Meng, H.Q. Liu, G.L. Shi, S.H. Wu, C.F. Sun, M.D. Wang, and L.H. Qi, Development and Characterization of Laser Clad High Temperature Self-lubricating Wear Resistant Composite Coatings on Ti–6Al–4V Alloy, Mater. Des., 2014, 55, p 404–409CrossRef X.B. Liu, X.J. Meng, H.Q. Liu, G.L. Shi, S.H. Wu, C.F. Sun, M.D. Wang, and L.H. Qi, Development and Characterization of Laser Clad High Temperature Self-lubricating Wear Resistant Composite Coatings on Ti–6Al–4V Alloy, Mater. Des., 2014, 55, p 404–409CrossRef
13.
Zurück zum Zitat C. Prakash, H.K. Kansal, B.S. Pabla, S. Puri, and A. Aggarwal, Electric Discharge Machining—A Potential Choice for Surface Modification of Metallic Implants for Orthopedics Applications: A Review, Proc. Inst. Mech. Eng. Part B, 2015, doi:10.1177/0954405415579113 C. Prakash, H.K. Kansal, B.S. Pabla, S. Puri, and A. Aggarwal, Electric Discharge Machining—A Potential Choice for Surface Modification of Metallic Implants for Orthopedics Applications: A Review, Proc. Inst. Mech. Eng. Part B, 2015, doi:10.​1177/​0954405415579113​
14.
Zurück zum Zitat S.L. Chen, M.H. Lin, C.C. Chen, and K.L. Ou, Effect of Electro-Discharging on Formation of Biocompatible Layer on Implant Surface, J. Alloys Compd., 2008, 456(1–2), p 413–418CrossRef S.L. Chen, M.H. Lin, C.C. Chen, and K.L. Ou, Effect of Electro-Discharging on Formation of Biocompatible Layer on Implant Surface, J. Alloys Compd., 2008, 456(1–2), p 413–418CrossRef
15.
Zurück zum Zitat P.W. Peng, K.L. Ou, H.C. Lin, Y.N. Pan, and C.H. Wang, Effect of Electrical-Discharging on Formation of Nanoporous Biocompatible Layer on Titanium, J. Alloys Compd., 2010, 492(1–2), p 625–630CrossRef P.W. Peng, K.L. Ou, H.C. Lin, Y.N. Pan, and C.H. Wang, Effect of Electrical-Discharging on Formation of Nanoporous Biocompatible Layer on Titanium, J. Alloys Compd., 2010, 492(1–2), p 625–630CrossRef
16.
Zurück zum Zitat T.S. Yang, M.S. Huang, M.S. Wang, M.H. Lin, M.Y. Tsai, and P.Y.W. Wang, Effect of Electrical Discharging on Formation of Nanoporous Biocompatible Layer on Ti-6Al-4V Alloys, Implant Dent., 2013, 22(4), p 374–379CrossRef T.S. Yang, M.S. Huang, M.S. Wang, M.H. Lin, M.Y. Tsai, and P.Y.W. Wang, Effect of Electrical Discharging on Formation of Nanoporous Biocompatible Layer on Ti-6Al-4V Alloys, Implant Dent., 2013, 22(4), p 374–379CrossRef
17.
Zurück zum Zitat W.F. Lee, T.S. Yang, Y.C. Wu, and P.W. Peng, Nanoporous Biocompatible Layer on Ti–6Al–4V Alloys Enhanced Osteoblast-Like Cell Response, J. Exp. Clin. Med., 2013, 5(3), p 92–96CrossRef W.F. Lee, T.S. Yang, Y.C. Wu, and P.W. Peng, Nanoporous Biocompatible Layer on Ti–6Al–4V Alloys Enhanced Osteoblast-Like Cell Response, J. Exp. Clin. Med., 2013, 5(3), p 92–96CrossRef
18.
Zurück zum Zitat T.C. Bin, L.D. Xin, W. Zhan, and G. Yang, Electro-Spark Alloying Using Graphite Electrode on Titanium Alloy Surface for Biomedical Applications, Appl. Surf. Sci., 2011, 257(15), p 6364–6371CrossRef T.C. Bin, L.D. Xin, W. Zhan, and G. Yang, Electro-Spark Alloying Using Graphite Electrode on Titanium Alloy Surface for Biomedical Applications, Appl. Surf. Sci., 2011, 257(15), p 6364–6371CrossRef
19.
Zurück zum Zitat P. Harcuba, L. Bacakova, J. Strasky, M. Bacakova, K. Novotna, and M. Janecek, Surface Treatment by Electric Discharge Machining of Ti-6Al-4V Alloy for Potential Application in Orthopaedics, J. Mech. Behav. Biomed. Mater., 2012, 7, p 96–105CrossRef P. Harcuba, L. Bacakova, J. Strasky, M. Bacakova, K. Novotna, and M. Janecek, Surface Treatment by Electric Discharge Machining of Ti-6Al-4V Alloy for Potential Application in Orthopaedics, J. Mech. Behav. Biomed. Mater., 2012, 7, p 96–105CrossRef
20.
Zurück zum Zitat J. Strasky, M. Janecek, P. Harcuba, M. Bukovina, and L. Wagner, The Effect of Microstructure on Fatigue Performance of Ti-6Al-4V Alloy after EDM Surface Treatment for Application in Orthopaedics, J. Mech. Behav. Biomed. Mater., 2011, 4(8), p 1955–1962CrossRef J. Strasky, M. Janecek, P. Harcuba, M. Bukovina, and L. Wagner, The Effect of Microstructure on Fatigue Performance of Ti-6Al-4V Alloy after EDM Surface Treatment for Application in Orthopaedics, J. Mech. Behav. Biomed. Mater., 2011, 4(8), p 1955–1962CrossRef
21.
Zurück zum Zitat J. Strasky, J. Havlikova, L. Bacakova, P. Harcuba, M. Mhaede, and M. Janecek, Characterization of Electric Discharge Machining, Subsequent Etching and Shot-Peening as a Surface Treatment for Orthopedic Implants, Appl. Surf. Sci., 2013, 281, p 73–78CrossRef J. Strasky, J. Havlikova, L. Bacakova, P. Harcuba, M. Mhaede, and M. Janecek, Characterization of Electric Discharge Machining, Subsequent Etching and Shot-Peening as a Surface Treatment for Orthopedic Implants, Appl. Surf. Sci., 2013, 281, p 73–78CrossRef
22.
Zurück zum Zitat J. Havlikova, J. Strasky, M. Vandrovcova, P. Harcuba, M. Mhaede, M. Janecek, and L. Bacakova, Innovative Surface Modification of Ti-6Al-4V Alloy with a Positive Effect on Osteoblast Proliferation and Fatigue Performance, Mater. Sci. Eng. C., 2014, 39, p 371–379CrossRef J. Havlikova, J. Strasky, M. Vandrovcova, P. Harcuba, M. Mhaede, M. Janecek, and L. Bacakova, Innovative Surface Modification of Ti-6Al-4V Alloy with a Positive Effect on Osteoblast Proliferation and Fatigue Performance, Mater. Sci. Eng. C., 2014, 39, p 371–379CrossRef
23.
Zurück zum Zitat H.K. Kansal, S. Singh, and P. Kumar, Technology and Research Developments in Powder Mixed Electric Discharge Machining (PMEDM), J. Mater. Process. Technol., 2007, 184, p 32–41CrossRef H.K. Kansal, S. Singh, and P. Kumar, Technology and Research Developments in Powder Mixed Electric Discharge Machining (PMEDM), J. Mater. Process. Technol., 2007, 184, p 32–41CrossRef
24.
Zurück zum Zitat N.M. Abbas, D.G. Solomon, and M.F. Bahari, A Review on Current Research Trends in Electrical Discharge Machining (EDM), Int. J. Mach. Tools Manuf., 2007, 47, p 1214–1228CrossRef N.M. Abbas, D.G. Solomon, and M.F. Bahari, A Review on Current Research Trends in Electrical Discharge Machining (EDM), Int. J. Mach. Tools Manuf., 2007, 47, p 1214–1228CrossRef
25.
Zurück zum Zitat P. Pecas and H. Henriques, Electrical Discharge Machining Using Simple and Powder-Mixed Dielectric: The Effect of the Electrode Area in the Surface Roughness and Topography, J. Mater. Process. Technol., 2008, 200, p 250–258CrossRef P. Pecas and H. Henriques, Electrical Discharge Machining Using Simple and Powder-Mixed Dielectric: The Effect of the Electrode Area in the Surface Roughness and Topography, J. Mater. Process. Technol., 2008, 200, p 250–258CrossRef
26.
Zurück zum Zitat H.K. Kansal, S. Singh, and P. Kumar, Parametric Optimization of Powder Mixed Electrical Discharge Machining by Response Surface Methodology, J. Mater. Process. Technol., 2005, 169(3), p 427–436CrossRef H.K. Kansal, S. Singh, and P. Kumar, Parametric Optimization of Powder Mixed Electrical Discharge Machining by Response Surface Methodology, J. Mater. Process. Technol., 2005, 169(3), p 427–436CrossRef
27.
Zurück zum Zitat H.K. Kansal, S. Singh, and P. Kumar, Application of Taguchi Method for Optimization of Powder Mixed Electrical Discharge Machining, Int. J. Manuf. Technol. Manag., 2005, 7(2–4), p 329–341 H.K. Kansal, S. Singh, and P. Kumar, Application of Taguchi Method for Optimization of Powder Mixed Electrical Discharge Machining, Int. J. Manuf. Technol. Manag., 2005, 7(2–4), p 329–341
28.
Zurück zum Zitat H. Kumar and J.P. Davim, Role of Powder in the Machining of Al-10% SiCp Metal Matrix Composites by Powder Mixed Electric Discharge Machining, J. Compos. Mater., 2010, 45(2), p 133–151CrossRef H. Kumar and J.P. Davim, Role of Powder in the Machining of Al-10% SiCp Metal Matrix Composites by Powder Mixed Electric Discharge Machining, J. Compos. Mater., 2010, 45(2), p 133–151CrossRef
29.
Zurück zum Zitat H.K. Kansal, S. Singh, and P. Kumar, Effect of Silicon Powder Mixed EDM on Machining Rate of AISI, D2 Die Steel, J. Manuf. Process., 2007, 9(1), p 13–22CrossRef H.K. Kansal, S. Singh, and P. Kumar, Effect of Silicon Powder Mixed EDM on Machining Rate of AISI, D2 Die Steel, J. Manuf. Process., 2007, 9(1), p 13–22CrossRef
30.
Zurück zum Zitat H. Kumar, Development of Mirror Like Surface Characteristics using Nano Powder Mixed Electric Discharge Machining (NPMEDM), Int. J. Adv. Manuf. Technol., 2014, 76(1–4), p 105–113 H. Kumar, Development of Mirror Like Surface Characteristics using Nano Powder Mixed Electric Discharge Machining (NPMEDM), Int. J. Adv. Manuf. Technol., 2014, 76(1–4), p 105–113
31.
Zurück zum Zitat American Society for Testing and Materials, Annual Book of ASTM Standards, ASTM, Designation: E384-11, Philadelphia, 2011 American Society for Testing and Materials, Annual Book of ASTM Standards, ASTM, Designation: E384-11, Philadelphia, 2011
32.
Zurück zum Zitat L.C. Lee, L.C. Lim, V. Narayanan, and V.C. Venkatesh, Quantification of Surface Damage of Tool Steels After EDM, Int. J. Mach. Tools Manuf., 1998, 28(4), p 359–372CrossRef L.C. Lee, L.C. Lim, V. Narayanan, and V.C. Venkatesh, Quantification of Surface Damage of Tool Steels After EDM, Int. J. Mach. Tools Manuf., 1998, 28(4), p 359–372CrossRef
33.
Zurück zum Zitat B. Lauwers, J.P. Kruth, W. Liu, W. Eeraerts, B. Schacht, and P. Bleys, Investigation of Material Removal Mechanism in EDM of Composite Ceramic Materials, J. Mater. Process. Technol., 2004, 149, p 347–352CrossRef B. Lauwers, J.P. Kruth, W. Liu, W. Eeraerts, B. Schacht, and P. Bleys, Investigation of Material Removal Mechanism in EDM of Composite Ceramic Materials, J. Mater. Process. Technol., 2004, 149, p 347–352CrossRef
34.
Zurück zum Zitat K. Muammer, U. Yusuf, and K. Alp, Investigations on Thermo-Mechanical Fabrication of Micro-Scale Porous Surface Features, J. Power Sources, 2008, 79, p 592–602 K. Muammer, U. Yusuf, and K. Alp, Investigations on Thermo-Mechanical Fabrication of Micro-Scale Porous Surface Features, J. Power Sources, 2008, 79, p 592–602
35.
Zurück zum Zitat P.J. Liew, Y. Jiwang, and K. Tsunemoto, Carbon Nanofiber Assisted Micro Electro Discharge Machining of Reaction-Bonded Silicon Carbide, J. Mater. Process. Technol., 2013, 213, p 1076–1087CrossRef P.J. Liew, Y. Jiwang, and K. Tsunemoto, Carbon Nanofiber Assisted Micro Electro Discharge Machining of Reaction-Bonded Silicon Carbide, J. Mater. Process. Technol., 2013, 213, p 1076–1087CrossRef
36.
Zurück zum Zitat B. Ekmekci and Y. Ersoz, How Suspended Particles Affect Surface Morphology in Powder Mixed Electrical Discharge Machining (PMEDM), Metall. Mater. Trans. B, 2012, 43(5), p 1138–1148CrossRef B. Ekmekci and Y. Ersoz, How Suspended Particles Affect Surface Morphology in Powder Mixed Electrical Discharge Machining (PMEDM), Metall. Mater. Trans. B, 2012, 43(5), p 1138–1148CrossRef
37.
Zurück zum Zitat S. Zinelis, S. Youssef, Y.S. Al Jabbari, N. Silikas, and G. Eliades, Multitechnique Characterization of CPTi Surfaces After Electro Discharge Machining (EDM), Clin. Oral. Invest., 2014, 18, p 67–75CrossRef S. Zinelis, S. Youssef, Y.S. Al Jabbari, N. Silikas, and G. Eliades, Multitechnique Characterization of CPTi Surfaces After Electro Discharge Machining (EDM), Clin. Oral. Invest., 2014, 18, p 67–75CrossRef
38.
Zurück zum Zitat F.L. Amorim, L.J. Stedile, and R.D. Torres, Performance and Surface Integrity of Ti6Al4V After Sinking EDM with Special Graphite Electrodes, J. Mater. Eng. Perform., 2013, 23, p 1480–1488CrossRef F.L. Amorim, L.J. Stedile, and R.D. Torres, Performance and Surface Integrity of Ti6Al4V After Sinking EDM with Special Graphite Electrodes, J. Mater. Eng. Perform., 2013, 23, p 1480–1488CrossRef
39.
Zurück zum Zitat P. Janmanee and A. Muttamara, Surface Modification of Tungsten Carbide by Electrical Discharge Coating (EDC) Using a Titanium Powder Suspension, Appl. Surf. Sci., 2012, 258(19), p 7255–7265CrossRef P. Janmanee and A. Muttamara, Surface Modification of Tungsten Carbide by Electrical Discharge Coating (EDC) Using a Titanium Powder Suspension, Appl. Surf. Sci., 2012, 258(19), p 7255–7265CrossRef
40.
Zurück zum Zitat H.J. Chen, K.L. Wu, and B.H. Yan, Characteristics of Al Alloy Surface After EDC with Sintered Ti Electrode and TiN Powder Additive, Int. J. Adv. Manuf. Technol., 2014, 72, p 319–332CrossRef H.J. Chen, K.L. Wu, and B.H. Yan, Characteristics of Al Alloy Surface After EDC with Sintered Ti Electrode and TiN Powder Additive, Int. J. Adv. Manuf. Technol., 2014, 72, p 319–332CrossRef
41.
Zurück zum Zitat Z.M. Zain, M.B. Ndaliman, A.A. Khan, and M.Y. Ali, Improving Micro-Hardness of Stainless Steel Through Powder-Mixed Electrical Discharge Machining, Proc. Inst. Mech. Eng. Part B, 2014, doi:10.1177/0954406214530872 Z.M. Zain, M.B. Ndaliman, A.A. Khan, and M.Y. Ali, Improving Micro-Hardness of Stainless Steel Through Powder-Mixed Electrical Discharge Machining, Proc. Inst. Mech. Eng. Part B, 2014, doi:10.​1177/​0954406214530872​
42.
Zurück zum Zitat M.B. Ndaliman, A.A. Khan, and M.Y. Ali, Influence of Electrical Discharge Machining Process Parameters on Surface Micro-Hardness of Titanium Alloy, Proc. Inst. Mech. Eng. Part B, 2013, 227, p 460–464CrossRef M.B. Ndaliman, A.A. Khan, and M.Y. Ali, Influence of Electrical Discharge Machining Process Parameters on Surface Micro-Hardness of Titanium Alloy, Proc. Inst. Mech. Eng. Part B, 2013, 227, p 460–464CrossRef
43.
Zurück zum Zitat Z.L. Wang, Y. Fang, P.N. Wu, W.S. Zhao, and K. Cheng, Surface Modification Process by Electrical Discharge Machining with a Ti Powder Green Compact Electrode, J. Mater. Process. Technol., 2002, 129, p 139–142CrossRef Z.L. Wang, Y. Fang, P.N. Wu, W.S. Zhao, and K. Cheng, Surface Modification Process by Electrical Discharge Machining with a Ti Powder Green Compact Electrode, J. Mater. Process. Technol., 2002, 129, p 139–142CrossRef
44.
Zurück zum Zitat M. Arun, V. Duraiselvam, and R. Senthilkumar, Synthesis of Electric Discharge Alloyed Nickel-Tungsten Coating on Tool Steel and its Tribological Studies, Mater. Des., 2014, 63, p 257–262CrossRef M. Arun, V. Duraiselvam, and R. Senthilkumar, Synthesis of Electric Discharge Alloyed Nickel-Tungsten Coating on Tool Steel and its Tribological Studies, Mater. Des., 2014, 63, p 257–262CrossRef
45.
Zurück zum Zitat V. Braic, M. Braic, M. Balaceanu, A. Vladescu, C.N. Zoita, I. Titorencu, and V. Jinga (Zr, Ti)CN Coatings as Potential Candidates for Biomedical Applications, Surf. Coat. Technol., 2011, 206, p 604–609CrossRef V. Braic, M. Braic, M. Balaceanu, A. Vladescu, C.N. Zoita, I. Titorencu, and V. Jinga (Zr, Ti)CN Coatings as Potential Candidates for Biomedical Applications, Surf. Coat. Technol., 2011, 206, p 604–609CrossRef
46.
Zurück zum Zitat S.A. Pauline and N. Rajendran, Biomimetic Novel Nanoporous Niobium Oxide Coating for Orthopaedic Applications, Appl. Surf. Sci., 2014, 290, p 448–457CrossRef S.A. Pauline and N. Rajendran, Biomimetic Novel Nanoporous Niobium Oxide Coating for Orthopaedic Applications, Appl. Surf. Sci., 2014, 290, p 448–457CrossRef
47.
Zurück zum Zitat S. Nagarajan and N. Rajendran, Sol–Gel Derived Porous Zirconium Dioxide Coated on 316L SS for Orthopedic Applications, J. Sol-Gel Sci. Technol., 2009, 52, p 188–196CrossRef S. Nagarajan and N. Rajendran, Sol–Gel Derived Porous Zirconium Dioxide Coated on 316L SS for Orthopedic Applications, J. Sol-Gel Sci. Technol., 2009, 52, p 188–196CrossRef
48.
Zurück zum Zitat S.L. Chen, M.H. Lin, G.X. Huang, and C.C. Wang, Research of the Recast Layer on Implant Surface Modified by Micro-Current Electrical Discharge Machining Using Deionized Water Mixed with Titanium Powder as Dielectric Solvent, Appl. Surf. Sci., 2014, 311, p 47–53CrossRef S.L. Chen, M.H. Lin, G.X. Huang, and C.C. Wang, Research of the Recast Layer on Implant Surface Modified by Micro-Current Electrical Discharge Machining Using Deionized Water Mixed with Titanium Powder as Dielectric Solvent, Appl. Surf. Sci., 2014, 311, p 47–53CrossRef
Metadaten
Titel
Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining
verfasst von
Chander Prakash
H. K. Kansal
B. S. Pabla
Sanjeev Puri
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1619-6

Weitere Artikel der Ausgabe 9/2015

Journal of Materials Engineering and Performance 9/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.