Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2017

31.05.2017

Microstructure, Strength, and Wear Behavior Relationship in Al-Fe3O4 Nanocomposite Produced by Multi-pass Friction Stir Processing

verfasst von: Meisam Eftekhari, Mojtaba Movahedi, Amir Hossein Kokabi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aluminum matrix in situ nanocomposite was produced by one to six passes friction stir processing (FSP) with pre-placed Fe3O4 nanoparticles (15-20 nm). Microstructure studies showed that solid-state reactions between the aluminum matrix and Fe3O4 particles during the process led to in situ formation of Al3Fe and Al5Fe2 in the stir zone. Initial Fe3O4 as well as Al-Fe intermetallic compounds (IMCs) particles were homogeneously dispersed in a fine grain matrix after six passes of FSP. Hardness and ultimate tensile strength of the composites were increased 64 and 27%, respectively, compared to the base metal. The reasons were studied in the light of reinforcing particles distribution, formation of Al-Fe IMCs, and grain size of the aluminum matrix. Pin-on-disk wear test indicated that in comparison with the base metal, the weight loss and friction coefficient of the composite processed by six passes decreased about 70 and 37%, respectively. Impact energy of the composite produced by six passes was considerably higher than that of the composite produced by one pass and reached to ~65% of the impact energy of the annealed aluminum base metal. Moreover, corrosion potential in the composites changed to more noble potentials compared to the base metal.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill, New York, 1994, p 176–184 W.F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill, New York, 1994, p 176–184
2.
Zurück zum Zitat G. Hussain, R. Hashemi, H. Hashemi, and K.A. Al-Ghamdi, An Experimental Study on Multi-pass Friction Stir Processing of Al/TiN Composite: Some Microstructural, Mechanical, and Wear Characteristics, Int. J. Adv. Manuf. Technol., 2016, 84, p 533–546CrossRef G. Hussain, R. Hashemi, H. Hashemi, and K.A. Al-Ghamdi, An Experimental Study on Multi-pass Friction Stir Processing of Al/TiN Composite: Some Microstructural, Mechanical, and Wear Characteristics, Int. J. Adv. Manuf. Technol., 2016, 84, p 533–546CrossRef
3.
Zurück zum Zitat Y. Zhao, X. Huang, Q. Li, J. Huang, and K. Yan, Effect of Friction Stir Processing with B4C Particles on the Microstructure and Mechanical Properties of 6061 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2016, 78, p 1437–1443CrossRef Y. Zhao, X. Huang, Q. Li, J. Huang, and K. Yan, Effect of Friction Stir Processing with B4C Particles on the Microstructure and Mechanical Properties of 6061 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2016, 78, p 1437–1443CrossRef
4.
Zurück zum Zitat O. Culha, C. Tekmen, M. Toparli, and Y. Tsunekawa, Mechanical Properties of In Situ Al2O3 Formed Al-Si Composite Coating Via Atmospheric Plasma Spraying, Mater. Des., 2010, 31, p 533–544CrossRef O. Culha, C. Tekmen, M. Toparli, and Y. Tsunekawa, Mechanical Properties of In Situ Al2O3 Formed Al-Si Composite Coating Via Atmospheric Plasma Spraying, Mater. Des., 2010, 31, p 533–544CrossRef
5.
Zurück zum Zitat O. Verezub, Z. Kálazi, G. Buza, N.V. Verezub, and G. Kaptay, In-Situ Synthesis of a Carbide Reinforced Steel Matrix Surface Nanocomposite by Laser Melt Injection Technology and Subsequent Heat Treatment, Surf. Coat. Technol., 2009, 203, p 3049–3057CrossRef O. Verezub, Z. Kálazi, G. Buza, N.V. Verezub, and G. Kaptay, In-Situ Synthesis of a Carbide Reinforced Steel Matrix Surface Nanocomposite by Laser Melt Injection Technology and Subsequent Heat Treatment, Surf. Coat. Technol., 2009, 203, p 3049–3057CrossRef
6.
Zurück zum Zitat S.M. Ma, P. Zhang, G. Ji, Z. Chen, G.A. Sun, S.Y. Zhong, V. Ji, and H.W. Wang, Microstructure and Mechanical Properties of Friction Stir Processed Al-Mg-Si Alloys Dispersion-Strengthened by Nanosized TiB2 Particles, J. Alloys Compd., 2014, 616, p 128–136CrossRef S.M. Ma, P. Zhang, G. Ji, Z. Chen, G.A. Sun, S.Y. Zhong, V. Ji, and H.W. Wang, Microstructure and Mechanical Properties of Friction Stir Processed Al-Mg-Si Alloys Dispersion-Strengthened by Nanosized TiB2 Particles, J. Alloys Compd., 2014, 616, p 128–136CrossRef
7.
Zurück zum Zitat R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78CrossRef R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78CrossRef
8.
Zurück zum Zitat M.H. Razmpoosh, A. Zarei-Hanzaki, S. Heshmati-Manesh, S.M. Fatemi-Varzaneh, and A. Marandi, The Grain Structure and Phase Transformations of TWIP Steel During Friction Stir Processing, J. Mater. Eng. Perform., 2015, 24(7), p 2826–2835CrossRef M.H. Razmpoosh, A. Zarei-Hanzaki, S. Heshmati-Manesh, S.M. Fatemi-Varzaneh, and A. Marandi, The Grain Structure and Phase Transformations of TWIP Steel During Friction Stir Processing, J. Mater. Eng. Perform., 2015, 24(7), p 2826–2835CrossRef
9.
Zurück zum Zitat J. Jafari, M.K. Besharati Givi, and M. Barmouz, Mechanical and Microstructural Characterization of Cu/CNT Nanocomposite Layers Fabricated Via Friction Stir Processing, Int. J. Adv. Manuf. Technol., 2015, 78, p 199–209CrossRef J. Jafari, M.K. Besharati Givi, and M. Barmouz, Mechanical and Microstructural Characterization of Cu/CNT Nanocomposite Layers Fabricated Via Friction Stir Processing, Int. J. Adv. Manuf. Technol., 2015, 78, p 199–209CrossRef
10.
Zurück zum Zitat M. Barmouz, M.K. Besharati Givi, and J. Jafari, Evaluation of Tensile Deformation Properties of Friction Stir Processed Pure Copper: Effect of Processing Parameters and Pass Number, J. Mater. Eng. Perform., 2014, 23(1), p 101–107CrossRef M. Barmouz, M.K. Besharati Givi, and J. Jafari, Evaluation of Tensile Deformation Properties of Friction Stir Processed Pure Copper: Effect of Processing Parameters and Pass Number, J. Mater. Eng. Perform., 2014, 23(1), p 101–107CrossRef
11.
Zurück zum Zitat R. Mishra, Z. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng. A, 2003, 341, p 307–310CrossRef R. Mishra, Z. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng. A, 2003, 341, p 307–310CrossRef
13.
Zurück zum Zitat R. Palanivel, I. Dinaharan, R.F. Laubscher, and J.P. Davim, Influence of Boron Nitride Nanoparticles on Microstructure and Wear Behavior of AA6082/TiB2 Hybrid Aluminum Composites Synthesized by Friction Stir Processing, Mater. Des., 2016, 106, p 195–204CrossRef R. Palanivel, I. Dinaharan, R.F. Laubscher, and J.P. Davim, Influence of Boron Nitride Nanoparticles on Microstructure and Wear Behavior of AA6082/TiB2 Hybrid Aluminum Composites Synthesized by Friction Stir Processing, Mater. Des., 2016, 106, p 195–204CrossRef
14.
Zurück zum Zitat D. Yadav and R. Bauri, Friction Stir Processing of Al-TiB2 In Situ Composite: Effect on Particle Distribution, Microstructure and Properties, J. Mater. Eng. Perform., 2015, 24(3), p 1116–1124CrossRef D. Yadav and R. Bauri, Friction Stir Processing of Al-TiB2 In Situ Composite: Effect on Particle Distribution, Microstructure and Properties, J. Mater. Eng. Perform., 2015, 24(3), p 1116–1124CrossRef
15.
Zurück zum Zitat S.R. Anvari, F. Karimzadeh, and M.H. Enayati, A Novel Route for Development of Al-Cr-O Surface Nano-composite by Friction Stir Processing, J. Alloys Compd., 2013, 562, p 48–55CrossRef S.R. Anvari, F. Karimzadeh, and M.H. Enayati, A Novel Route for Development of Al-Cr-O Surface Nano-composite by Friction Stir Processing, J. Alloys Compd., 2013, 562, p 48–55CrossRef
16.
Zurück zum Zitat J.M. Lee, S.B. Kang, T. Sato, H. Tezuka, and A. Kamiob, Evolution of Iron Aluminide in Al/Fe In Situ Composites Fabricated by Plasma Synthesis Method, Mater. Sci. Eng. A, 2003, 362, p 257–263CrossRef J.M. Lee, S.B. Kang, T. Sato, H. Tezuka, and A. Kamiob, Evolution of Iron Aluminide in Al/Fe In Situ Composites Fabricated by Plasma Synthesis Method, Mater. Sci. Eng. A, 2003, 362, p 257–263CrossRef
17.
Zurück zum Zitat J. Gu, S. Gu, L. Xue, S. Wu, and Y. Yan, Microstructure and Mechanical Properties of In-situ Al13Fe4/Al Composites Prepared by Mechanical Alloying and Spark Plasma Sintering, Mater. Sci. Eng. A, 2012, 558, p 684–691CrossRef J. Gu, S. Gu, L. Xue, S. Wu, and Y. Yan, Microstructure and Mechanical Properties of In-situ Al13Fe4/Al Composites Prepared by Mechanical Alloying and Spark Plasma Sintering, Mater. Sci. Eng. A, 2012, 558, p 684–691CrossRef
18.
Zurück zum Zitat I.S. Lee, P.W. Kao, and N.J. Ho, Microstructure and Mechanical Properties of Al-Fe In Situ Nanocomposite Produced by Friction Stir Processing, Intermetallics, 2008, 16, p 1104–1108CrossRef I.S. Lee, P.W. Kao, and N.J. Ho, Microstructure and Mechanical Properties of Al-Fe In Situ Nanocomposite Produced by Friction Stir Processing, Intermetallics, 2008, 16, p 1104–1108CrossRef
19.
Zurück zum Zitat M. SarkariKhorrami, S. Samadi, Z. Janghorban, and M. Movahedi, In-situ Aluminum Matrix Composite Produced by Friction Stir Processing Using FE Particles, Mater. Sci. Eng. A, 2015, 641, p 380–390CrossRef M. SarkariKhorrami, S. Samadi, Z. Janghorban, and M. Movahedi, In-situ Aluminum Matrix Composite Produced by Friction Stir Processing Using FE Particles, Mater. Sci. Eng. A, 2015, 641, p 380–390CrossRef
21.
Zurück zum Zitat D.R. Gaskell, Introduction of thermodynamics of materials, 4th ed., Taylor & Francis e-Library pub, Abingdon, 2009, p 412–430 D.R. Gaskell, Introduction of thermodynamics of materials, 4th ed., Taylor & Francis e-Library pub, Abingdon, 2009, p 412–430
22.
Zurück zum Zitat M. Movahedi, A.H. Kokabi, S.M. Seyed Reihani, H. Najafi, S.A. Farzadfar, W.J. Cheng, and C.J. Wang, Growth Kinetics of Al-Fe Intermetallic Compounds During Annealing Treatment of Friction Stir Lap Welds, Mater. Charact., 2014, 90, p 121–126CrossRef M. Movahedi, A.H. Kokabi, S.M. Seyed Reihani, H. Najafi, S.A. Farzadfar, W.J. Cheng, and C.J. Wang, Growth Kinetics of Al-Fe Intermetallic Compounds During Annealing Treatment of Friction Stir Lap Welds, Mater. Charact., 2014, 90, p 121–126CrossRef
23.
Zurück zum Zitat W. Xingqing, J.V. Wood, S. Yongjiang, and L. Haibo, Formation of Intermetallic Compound in Iron-Aluminum Alloys, J. Shanghai Univ., 2014, 2, p 305–310 W. Xingqing, J.V. Wood, S. Yongjiang, and L. Haibo, Formation of Intermetallic Compound in Iron-Aluminum Alloys, J. Shanghai Univ., 2014, 2, p 305–310
24.
Zurück zum Zitat N. Hansen and B. Bay, Initial Stages of Recrystallization in Aluminum Containing Both Large and Small Particles, Acta Metall., 1981, 29, p 65–77CrossRef N. Hansen and B. Bay, Initial Stages of Recrystallization in Aluminum Containing Both Large and Small Particles, Acta Metall., 1981, 29, p 65–77CrossRef
25.
Zurück zum Zitat R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274CrossRef R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274CrossRef
26.
Zurück zum Zitat C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, Al-Al3Ti Nanocomposites Produced In Situ by Friction Stir Processing, Acta Mater., 2006, 54, p 5241–5249CrossRef C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, Al-Al3Ti Nanocomposites Produced In Situ by Friction Stir Processing, Acta Mater., 2006, 54, p 5241–5249CrossRef
27.
Zurück zum Zitat M. Sarkari Khorrami, M. Kazeminezhad, and A.H. Kokabi, The Effect of SiC Nanoparticles on the Friction Stir Processing of Severely Deformed Aluminum, Mater. Sci. Eng. A, 2014, 602, p 110–118CrossRef M. Sarkari Khorrami, M. Kazeminezhad, and A.H. Kokabi, The Effect of SiC Nanoparticles on the Friction Stir Processing of Severely Deformed Aluminum, Mater. Sci. Eng. A, 2014, 602, p 110–118CrossRef
28.
Zurück zum Zitat E.O. Hall, The Deformation and Ageing of Mild Steel: III, Discussion of Results, Proc. Phys. Soc. B, 1951, 64, p 747–753CrossRef E.O. Hall, The Deformation and Ageing of Mild Steel: III, Discussion of Results, Proc. Phys. Soc. B, 1951, 64, p 747–753CrossRef
29.
Zurück zum Zitat N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 147, p 25–28 N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 147, p 25–28
30.
Zurück zum Zitat D. Tabor, The Hardness and Strength of Metals, J. Inst. Metals, 1951, 79, p 1–18 D. Tabor, The Hardness and Strength of Metals, J. Inst. Metals, 1951, 79, p 1–18
31.
Zurück zum Zitat T. Shanmugasundaram, M. Heilmaier, B.S. Murty, and V. Subramanya Sarma, On the Hall–Petch Relationship in a Nanostructured Al-Cu Alloy, Mater. Sci. Eng. A, 2010, 527, p 7821–7825CrossRef T. Shanmugasundaram, M. Heilmaier, B.S. Murty, and V. Subramanya Sarma, On the Hall–Petch Relationship in a Nanostructured Al-Cu Alloy, Mater. Sci. Eng. A, 2010, 527, p 7821–7825CrossRef
32.
Zurück zum Zitat M. Khajouei-Nezhad, M.H. Paydar, R. Ebrahimi, P. Jenei, P. Nagy, and J. Gubicza, Microstructure and Mechanical Properties of Ultrafine-Grained Aluminum Consolidated by High-Pressure Torsion, Mater. Sci. Eng. A, 2017, 682, p 501–508CrossRef M. Khajouei-Nezhad, M.H. Paydar, R. Ebrahimi, P. Jenei, P. Nagy, and J. Gubicza, Microstructure and Mechanical Properties of Ultrafine-Grained Aluminum Consolidated by High-Pressure Torsion, Mater. Sci. Eng. A, 2017, 682, p 501–508CrossRef
33.
Zurück zum Zitat C.R. Bradbury, J.-K. Gomon, L. Kollo, H. Kwon, and M. Leparoux, Hardness of Multi Wall Carbon Nanotubes Reinforced Aluminium Matrix Composites, J. Alloys Compd., 2014, 585, p 362–367CrossRef C.R. Bradbury, J.-K. Gomon, L. Kollo, H. Kwon, and M. Leparoux, Hardness of Multi Wall Carbon Nanotubes Reinforced Aluminium Matrix Composites, J. Alloys Compd., 2014, 585, p 362–367CrossRef
34.
Zurück zum Zitat Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda, Hall–Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys, Mater. Sci. Eng. A, 2003, 354, p 298–305CrossRef Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda, Hall–Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys, Mater. Sci. Eng. A, 2003, 354, p 298–305CrossRef
35.
Zurück zum Zitat N.P. Suh, The Delamination Theory of Wear, Wear, 1973, 25, p 111–124CrossRef N.P. Suh, The Delamination Theory of Wear, Wear, 1973, 25, p 111–124CrossRef
36.
Zurück zum Zitat R.L. Deuis, C. Subramanian, and J.M. Yellupb, Dry Sliding Wear of Aluminium Composites-A Review, Compos. Sci. Technol., 1997, 57, p 415–435CrossRef R.L. Deuis, C. Subramanian, and J.M. Yellupb, Dry Sliding Wear of Aluminium Composites-A Review, Compos. Sci. Technol., 1997, 57, p 415–435CrossRef
37.
Zurück zum Zitat B. Bhushan, Modern Tribology Handbook, CRC Press LLC, Florida, 2001, p 1–1728 B. Bhushan, Modern Tribology Handbook, CRC Press LLC, Florida, 2001, p 1–1728
38.
Zurück zum Zitat E.R.I. Mahmoud, M. Takahashi, T. Shibayanagi, and K. Ikeuchi, Wear Characteristics of Surface-Hybrid-MMCs Layer Fabricated on Aluminum Plate by Friction Stir Processing, Wear, 2010, 268, p 1111–1121CrossRef E.R.I. Mahmoud, M. Takahashi, T. Shibayanagi, and K. Ikeuchi, Wear Characteristics of Surface-Hybrid-MMCs Layer Fabricated on Aluminum Plate by Friction Stir Processing, Wear, 2010, 268, p 1111–1121CrossRef
39.
Zurück zum Zitat B. Venkataraman and G. Sundararajan, Correlation Between the Characteristics of the Mechanically Mixed Layer and Wear Behavior of Aluminum, Al-7075 Alloy and Al-MMCs, Wear, 2000, 245, p 22–38CrossRef B. Venkataraman and G. Sundararajan, Correlation Between the Characteristics of the Mechanically Mixed Layer and Wear Behavior of Aluminum, Al-7075 Alloy and Al-MMCs, Wear, 2000, 245, p 22–38CrossRef
40.
Zurück zum Zitat M.R. Rosenberger, E. Forlerer, and C.E. Schvezov, Wear of Different Aluminum Matrix Composites Under Conditions that Generate a Mechanically Mixed Layer, Wear, 2005, 259, p p590–p601CrossRef M.R. Rosenberger, E. Forlerer, and C.E. Schvezov, Wear of Different Aluminum Matrix Composites Under Conditions that Generate a Mechanically Mixed Layer, Wear, 2005, 259, p p590–p601CrossRef
41.
Zurück zum Zitat N. Birbilis and R.G. Buchheit, Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys, J. Electrochem. Soc., 2005, 152(4), p B140–B151CrossRef N. Birbilis and R.G. Buchheit, Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys, J. Electrochem. Soc., 2005, 152(4), p B140–B151CrossRef
42.
Zurück zum Zitat M.K. Cavanaugh, J.-C. Li, N. Birbilis, and R.G. Buchheit, Electrochemical Characterization of Intermetallic Phases Common to Aluminum Alloys as a Function of Solution Temperature, J. Electrochem. Soc., 2014, 161(12), p C535–C543CrossRef M.K. Cavanaugh, J.-C. Li, N. Birbilis, and R.G. Buchheit, Electrochemical Characterization of Intermetallic Phases Common to Aluminum Alloys as a Function of Solution Temperature, J. Electrochem. Soc., 2014, 161(12), p C535–C543CrossRef
43.
Zurück zum Zitat H.C. Ananda Murthy and S.K. Singh, Influence of TiC Particulate Reinforcement on the Corrosion Behaviour of Al 6061 Metal Matrix Composites, Adv. Mater. Lett., 2015, 6(7), p 633–640CrossRef H.C. Ananda Murthy and S.K. Singh, Influence of TiC Particulate Reinforcement on the Corrosion Behaviour of Al 6061 Metal Matrix Composites, Adv. Mater. Lett., 2015, 6(7), p 633–640CrossRef
Metadaten
Titel
Microstructure, Strength, and Wear Behavior Relationship in Al-Fe3O4 Nanocomposite Produced by Multi-pass Friction Stir Processing
verfasst von
Meisam Eftekhari
Mojtaba Movahedi
Amir Hossein Kokabi
Publikationsdatum
31.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2752-1

Weitere Artikel der Ausgabe 7/2017

Journal of Materials Engineering and Performance 7/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.