Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2020

12.08.2020

Comparison of AC Corrosion of X80 Steel in Real Soil, Soil Extract Solution, and Simulated Solution

verfasst von: Boxin Wei, Jin Xu, Qingyu Qin, Qi Fu, Yunlong Bai, Changkun Yu, Cheng Sun, Wei Ke

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Corrosion of X80 steel induced by alternating current (AC) in acidic red soil (ARS), acidic red soil-extracted solution (SES), and acidic red soil-simulated solution (SSS) has been investigated. Corrosion of the steel coupons is dramatically aggravated by AC. The kinetic relationship between the corrosion rate (CR) and the AC density (JAC) in the three testing media all follows a model function, CR= αJACn  + β. Grey relational analysis shows that the correlation coefficient between corrosion rates with JAC in SES and ARS is 0.614; however, the coefficient between those in SSS and ARS is only 0.484, which indicates that SES is more suitable for the evaluation of soil corrosion than SSS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.K. Gupta and B.K. Gupta, The Critical Soil Moisture Content in the Underground Corrosion of Mild Steel, Corros. Sci., 1979, 19, p 171–178CrossRef S.K. Gupta and B.K. Gupta, The Critical Soil Moisture Content in the Underground Corrosion of Mild Steel, Corros. Sci., 1979, 19, p 171–178CrossRef
2.
Zurück zum Zitat M. Barbalat, L. Lanarde, D. Caron, M. Meyer, J. Vittonato, F. Castillon, S. Fontaine, and P. Refait, Electrochemical Study of the Corrosion Rate Of Carbon Steel in Soil: Evolution with Time and Determination of Residual Corrosion Rates Under Cathodic Protection, Corros. Sci., 2012, 55, p 246–253CrossRef M. Barbalat, L. Lanarde, D. Caron, M. Meyer, J. Vittonato, F. Castillon, S. Fontaine, and P. Refait, Electrochemical Study of the Corrosion Rate Of Carbon Steel in Soil: Evolution with Time and Determination of Residual Corrosion Rates Under Cathodic Protection, Corros. Sci., 2012, 55, p 246–253CrossRef
3.
Zurück zum Zitat H. Liu and Y. Frank Cheng, Mechanism of Microbiologically Influenced Corrosion of X52 Pipeline Steel in a Wet Soil Containing Sulfate-Reduced Bacteria, Electrochim. Acta., 2017, 253, p 368–378CrossRef H. Liu and Y. Frank Cheng, Mechanism of Microbiologically Influenced Corrosion of X52 Pipeline Steel in a Wet Soil Containing Sulfate-Reduced Bacteria, Electrochim. Acta., 2017, 253, p 368–378CrossRef
4.
Zurück zum Zitat Y. Pan, Z. Liu, Y. Zhang et al., Effect of AC Current Density on the Stress Corrosion Cracking Behavior and Mechanism of E690 High-Strength Steel in Simulated Seawater, J. Mater. Eng. Perform., 2019, 28, p 6931–6941CrossRef Y. Pan, Z. Liu, Y. Zhang et al., Effect of AC Current Density on the Stress Corrosion Cracking Behavior and Mechanism of E690 High-Strength Steel in Simulated Seawater, J. Mater. Eng. Perform., 2019, 28, p 6931–6941CrossRef
5.
Zurück zum Zitat D. Kuang and Y.F. Cheng, Understand the AC Induced Pitting Corrosion on Pipelines in Both High pH and Neutral pH Carbonate/Bicarbonate Solutions, Corros. Sci., 2014, 85, p 304–310CrossRef D. Kuang and Y.F. Cheng, Understand the AC Induced Pitting Corrosion on Pipelines in Both High pH and Neutral pH Carbonate/Bicarbonate Solutions, Corros. Sci., 2014, 85, p 304–310CrossRef
6.
Zurück zum Zitat AC Corrosion State-of-the-Art: Corrosion Rate, Mechanism, and Mitigation Requirements. NACE Publication 35110-2010-SG, 2007, p 1–60 AC Corrosion State-of-the-Art: Corrosion Rate, Mechanism, and Mitigation Requirements. NACE Publication 35110-2010-SG, 2007, p 1–60
7.
Zurück zum Zitat L. Bertolini, M. Carsana, and P. Pedeferri, Corrosion Behaviour of Steel in Concrete in the Presence of Stray Current, Corros. Sci., 2007, 49, p 1056–1068CrossRef L. Bertolini, M. Carsana, and P. Pedeferri, Corrosion Behaviour of Steel in Concrete in the Presence of Stray Current, Corros. Sci., 2007, 49, p 1056–1068CrossRef
8.
Zurück zum Zitat Z.T. Jiang, Y.X. Du, M.X. Lu, Y. Zhang, D.Z. Tang, and L. Dong, New Findings on the Factors Accelerating AC Corrosion of Buried Pipeline, Corros. Sci., 2014, 81, p 1–10CrossRef Z.T. Jiang, Y.X. Du, M.X. Lu, Y. Zhang, D.Z. Tang, and L. Dong, New Findings on the Factors Accelerating AC Corrosion of Buried Pipeline, Corros. Sci., 2014, 81, p 1–10CrossRef
9.
Zurück zum Zitat S.B. Lalvani and X.A. Lin, A Theoretical Approach for Predicting AC-Induced Corrosion, Corros. Sci., 1994, 36, p 1039–1046CrossRef S.B. Lalvani and X.A. Lin, A Theoretical Approach for Predicting AC-Induced Corrosion, Corros. Sci., 1994, 36, p 1039–1046CrossRef
10.
Zurück zum Zitat L.Y. Xu, X. Su, Z.X. Yin, Y.H. Tang, and Y.F. Cheng, Development of a Real-Time AC/DC Data Acquisition Technique for Studies of AC Corrosion of Pipelines, Corros. Sci., 2012, 61, p 215–223CrossRef L.Y. Xu, X. Su, Z.X. Yin, Y.H. Tang, and Y.F. Cheng, Development of a Real-Time AC/DC Data Acquisition Technique for Studies of AC Corrosion of Pipelines, Corros. Sci., 2012, 61, p 215–223CrossRef
11.
Zurück zum Zitat S. Goidanich, L. Lazzari, and M. Ormellese, AC Corrosion–Part 2: Parameters Influencing Corrosion Rate, Corros. Sci., 2010, 52, p 916–922CrossRef S. Goidanich, L. Lazzari, and M. Ormellese, AC Corrosion–Part 2: Parameters Influencing Corrosion Rate, Corros. Sci., 2010, 52, p 916–922CrossRef
12.
Zurück zum Zitat M. Zhu and C.W. Du, A New Understanding on AC Corrosion of Pipeline Steel in Alkaline Environment, J. Materi. Eng. Perform., 2017, 26, p 221–228CrossRef M. Zhu and C.W. Du, A New Understanding on AC Corrosion of Pipeline Steel in Alkaline Environment, J. Materi. Eng. Perform., 2017, 26, p 221–228CrossRef
13.
Zurück zum Zitat J. Xu, Y.L. Bai, T.Q. Wu, M.C. Yan, C.K. Yu, and C. Sun, Effect of Elastic Stress and Alternating Current on Corrosion of X80 Pipeline Steel in Simulated Soil Solution, Eng. Fail. Anal., 2019, 100, p 192–205CrossRef J. Xu, Y.L. Bai, T.Q. Wu, M.C. Yan, C.K. Yu, and C. Sun, Effect of Elastic Stress and Alternating Current on Corrosion of X80 Pipeline Steel in Simulated Soil Solution, Eng. Fail. Anal., 2019, 100, p 192–205CrossRef
14.
Zurück zum Zitat Y.B. Guo, T. Meng, D.G. Wang, H. Tan, and R.Y. He, Experimental Research on the Corrosion of X Series Pipeline Steels Under Alternating Current Interference, Eng. Fail. Anal., 2017, 78, p 87–98CrossRef Y.B. Guo, T. Meng, D.G. Wang, H. Tan, and R.Y. He, Experimental Research on the Corrosion of X Series Pipeline Steels Under Alternating Current Interference, Eng. Fail. Anal., 2017, 78, p 87–98CrossRef
15.
Zurück zum Zitat M. Zhu, Y.F. Yuan, S.M. Yin, G.H. Yu, S.Y. Guo, Y.Z. Huang, and C.W. Du, Corrosion Behavior of Pipeline Steel with Different Microstructures Under AC Interference in Acid Soil Simulation Solution, J. Mater. Eng. Perform., 2019, 28, p 1698–1706CrossRef M. Zhu, Y.F. Yuan, S.M. Yin, G.H. Yu, S.Y. Guo, Y.Z. Huang, and C.W. Du, Corrosion Behavior of Pipeline Steel with Different Microstructures Under AC Interference in Acid Soil Simulation Solution, J. Mater. Eng. Perform., 2019, 28, p 1698–1706CrossRef
16.
Zurück zum Zitat Y.C. Qing, Z.W. Yang, J. Xian, J. Xu, M.C. Yan, T.Q. Wu, C.K. Yu, L.B. Yu, and S. Cheng, Corrosion Behavior of Q235 Steel Under the Interaction of Alteranting Current and Microorganisms, Acta Metall. Sin., 2016, 52, p 1142–1152 Y.C. Qing, Z.W. Yang, J. Xian, J. Xu, M.C. Yan, T.Q. Wu, C.K. Yu, L.B. Yu, and S. Cheng, Corrosion Behavior of Q235 Steel Under the Interaction of Alteranting Current and Microorganisms, Acta Metall. Sin., 2016, 52, p 1142–1152
17.
Zurück zum Zitat Y.T. Li, X. Li, G.W. Cai, and L.H. Yang, Influence of AC Interference to Corrosion of Q235 Carbon Steel, Corros. Eng. Sci. Technol., 2013, 48, p 322–326CrossRef Y.T. Li, X. Li, G.W. Cai, and L.H. Yang, Influence of AC Interference to Corrosion of Q235 Carbon Steel, Corros. Eng. Sci. Technol., 2013, 48, p 322–326CrossRef
18.
Zurück zum Zitat B.X. Wei, Q.Y. Qin, Y.L. Bai, C.K. Yu, J. Xu, C. Sun, and W. Ke, Short-Period Corrosion of X80 Pipeline Steel Induced by AC Current in Acidic Red Soil, Eng. Fail. Anal., 2019, 105, p 156–175CrossRef B.X. Wei, Q.Y. Qin, Y.L. Bai, C.K. Yu, J. Xu, C. Sun, and W. Ke, Short-Period Corrosion of X80 Pipeline Steel Induced by AC Current in Acidic Red Soil, Eng. Fail. Anal., 2019, 105, p 156–175CrossRef
19.
Zurück zum Zitat M.C. Yan, C. Sun, J. Xu, and W. Ke, Anoxic Corrosion Behavior of Pipeline Steel in Acidic Soils, Ind. Eng. Chem. Res., 2014, 53, p 17615–17624CrossRef M.C. Yan, C. Sun, J. Xu, and W. Ke, Anoxic Corrosion Behavior of Pipeline Steel in Acidic Soils, Ind. Eng. Chem. Res., 2014, 53, p 17615–17624CrossRef
20.
Zurück zum Zitat S.X. Wang, D.X. Liu, N. Du, Q. Zhao, S.Y. Liu, and J.H. Xiao, Relationship Between Dissolved Oxygen and Corrosion Characterization of X80 Steel in Acidic Soil Simulated Solution, Int. J. Electrochem. Sci., 2015, 10, p 4393–4404 S.X. Wang, D.X. Liu, N. Du, Q. Zhao, S.Y. Liu, and J.H. Xiao, Relationship Between Dissolved Oxygen and Corrosion Characterization of X80 Steel in Acidic Soil Simulated Solution, Int. J. Electrochem. Sci., 2015, 10, p 4393–4404
21.
Zurück zum Zitat S. Qian and Y.F. Cheng, Accelerated Corrosion of Pipeline Steel and Reduced Cathodic Protection Effectiveness Under Direct Current Interference, Constr. Build. Mater., 2017, 148, p 675–685CrossRef S. Qian and Y.F. Cheng, Accelerated Corrosion of Pipeline Steel and Reduced Cathodic Protection Effectiveness Under Direct Current Interference, Constr. Build. Mater., 2017, 148, p 675–685CrossRef
22.
Zurück zum Zitat S.X. Wang, N. Du, D.X. Liu, J.H. Xiao, and D.P. Deng, Influence of Soil Water Content Adjusted by Simulated Acid Rain on Corrosion Behavior of X80 Steel in Red Soil, J. Chin. Soc. Corros. Prot., 2018, 38, p 147–157 S.X. Wang, N. Du, D.X. Liu, J.H. Xiao, and D.P. Deng, Influence of Soil Water Content Adjusted by Simulated Acid Rain on Corrosion Behavior of X80 Steel in Red Soil, J. Chin. Soc. Corros. Prot., 2018, 38, p 147–157
23.
Zurück zum Zitat S. Yang, Y. Tang, M.C. Yan, K.W. Zhao, C. Sun, J. Xu, and C.K. Yu, Effect of Temperature on Corrosion Behavior of X80 Pipeline Steel in Acidic Soil, J. Chin. Soc. Corros. Prot., 2015, 35, p 227–232 S. Yang, Y. Tang, M.C. Yan, K.W. Zhao, C. Sun, J. Xu, and C.K. Yu, Effect of Temperature on Corrosion Behavior of X80 Pipeline Steel in Acidic Soil, J. Chin. Soc. Corros. Prot., 2015, 35, p 227–232
24.
Zurück zum Zitat M.C. Yan, C. Sun, J. Xu, J.H. Dong, and W. Ke, Role of Fe Oxides in Corrosion of Pipeline Steel in a Red Clay Soil, Corros. Sci., 2014, 80, p 309–317CrossRef M.C. Yan, C. Sun, J. Xu, J.H. Dong, and W. Ke, Role of Fe Oxides in Corrosion of Pipeline Steel in a Red Clay Soil, Corros. Sci., 2014, 80, p 309–317CrossRef
25.
Zurück zum Zitat Y.L. Zhou, J. Chen, and Z.Y. Liu, Corrosion Behavior of Rusted 550 MPa Grade Offshore Platform Steel, J. Iron. Steel Res. Int., 2013, 20, p 66–73CrossRef Y.L. Zhou, J. Chen, and Z.Y. Liu, Corrosion Behavior of Rusted 550 MPa Grade Offshore Platform Steel, J. Iron. Steel Res. Int., 2013, 20, p 66–73CrossRef
26.
Zurück zum Zitat J.J. Perdomo, M.E. Chabica, and I. Song, Chemical and Electrochemical Conditions on Steel Under Disbonded Coatings: The Effect of Previously Corroded Surfaces and Wet and Dry Cycles, Corros. Sci., 2001, 43, p 515–532CrossRef J.J. Perdomo, M.E. Chabica, and I. Song, Chemical and Electrochemical Conditions on Steel Under Disbonded Coatings: The Effect of Previously Corroded Surfaces and Wet and Dry Cycles, Corros. Sci., 2001, 43, p 515–532CrossRef
27.
Zurück zum Zitat W. Han, C. Pan, Z.Y. Wang, and G. Yu, A Study on the Initial Corrosion Behavior of Carbon Steel Exposed to Outdoor Wet-Dry Cyclic Condition, Corros. Sci., 2014, 88, p 89–100CrossRef W. Han, C. Pan, Z.Y. Wang, and G. Yu, A Study on the Initial Corrosion Behavior of Carbon Steel Exposed to Outdoor Wet-Dry Cyclic Condition, Corros. Sci., 2014, 88, p 89–100CrossRef
28.
Zurück zum Zitat J.H. Wang, F.I. Wei, Y.S. Chang, and H.C. Shih, The Corrosion Mechanisms of Carbon Steel and Weathering Steel in SO2 Polluted Atmospheres, Mater. Chem. Phys., 1997, 47, p 1–8CrossRef J.H. Wang, F.I. Wei, Y.S. Chang, and H.C. Shih, The Corrosion Mechanisms of Carbon Steel and Weathering Steel in SO2 Polluted Atmospheres, Mater. Chem. Phys., 1997, 47, p 1–8CrossRef
29.
Zurück zum Zitat N.W. Dai, J.X. Zhang, Q.M. Chen, B. Yi, F.H. Cao, and J.Q. Zhang, Effect of the Direct Current Electric Field on the Initial Corrosion of Steel in Simulated Industrial Atmospheric Environment, Corros. Sci., 2015, 99, p 295–303CrossRef N.W. Dai, J.X. Zhang, Q.M. Chen, B. Yi, F.H. Cao, and J.Q. Zhang, Effect of the Direct Current Electric Field on the Initial Corrosion of Steel in Simulated Industrial Atmospheric Environment, Corros. Sci., 2015, 99, p 295–303CrossRef
30.
Zurück zum Zitat B.C.M. Morcillo, J. Alcantara, I. Díaz, R. Wolthuis, and D. de la Fuente, SEM/Micro-Raman Characterization of the Morphologies of Marine Atmospheric Corrosion Products Formed on Mild Steel, J. Electrochem. Soc, 2016, 163, p C426–439CrossRef B.C.M. Morcillo, J. Alcantara, I. Díaz, R. Wolthuis, and D. de la Fuente, SEM/Micro-Raman Characterization of the Morphologies of Marine Atmospheric Corrosion Products Formed on Mild Steel, J. Electrochem. Soc, 2016, 163, p C426–439CrossRef
31.
Zurück zum Zitat C.Y. Fu, J.S. Zheng, J.M. Zhao, and W.D. Xu, Application of Grey Relational Analysis for Corrosion Failure of Oil Tubes, Corros. Sci., 2001, 43, p 881–889CrossRef C.Y. Fu, J.S. Zheng, J.M. Zhao, and W.D. Xu, Application of Grey Relational Analysis for Corrosion Failure of Oil Tubes, Corros. Sci., 2001, 43, p 881–889CrossRef
32.
Zurück zum Zitat J. Deng, The Grey Theoretical Basis, Huazhong University of Science and Technology Press, Wuhan, 2002 J. Deng, The Grey Theoretical Basis, Huazhong University of Science and Technology Press, Wuhan, 2002
33.
Zurück zum Zitat X.G. Li, C.F. Dong, K. Xiao, C.W. Du, H.R. Zhou, and C. Lin, Initial Behavior and Mechanism of Atmospheric Corrosion for Metal, Science Press, Beijing, 2006 X.G. Li, C.F. Dong, K. Xiao, C.W. Du, H.R. Zhou, and C. Lin, Initial Behavior and Mechanism of Atmospheric Corrosion for Metal, Science Press, Beijing, 2006
Metadaten
Titel
Comparison of AC Corrosion of X80 Steel in Real Soil, Soil Extract Solution, and Simulated Solution
verfasst von
Boxin Wei
Jin Xu
Qingyu Qin
Qi Fu
Yunlong Bai
Changkun Yu
Cheng Sun
Wei Ke
Publikationsdatum
12.08.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05002-6

Weitere Artikel der Ausgabe 8/2020

Journal of Materials Engineering and Performance 8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.