Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2021

21.04.2021

Microstructure and Mechanical Properties of Spark Plasma Sintered Nanocrystalline TiAl-xB Composites (0.0 <x<1.5 at.%) Containing Carbon Nanotubes

verfasst von: Ali Mohammadnejad, Abbas Bahrami, Leili Tafaghodi Khajavi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper investigates the effects of minor additions of carbon nanotubes (CNTs) and boron on the structure and mechanical properties of nanocrystalline TiAl intermetallic compound. Nanocrystalline TiAl-xB(0.0 < x < 1.5 at.%) composites containing 1 wt.% CNT were synthesized by mechanical alloying and spark plasma sintering. Microstructure and mechanical properties of samples were evaluated using a scanning electron microscopy, energy-dispersive x-ray spectroscopy, elemental mapping, differential scanning calorimetry, Vickers hardness measurement, and shear–punch test. The findings of the current study show that milling up to 40 h results in the formation of Ti(Al) solid solution. Further milling up to 60 h is associated with a complete amorphization of the structure. Results also show that spark plasma sintering leads to the transformation of Ti(Al) solid solution into a mixture of Ti3Al, Ti2Al, and TiAl intermetallic compounds. Minor additions of boron and CNTs cause a significant grain refinement. The addition of the latter significantly improves the elongation as well. The implications of boron/CNT additions for the microstructure of TiAl and how it correlates with the mechanical properties are thoroughly discussed in this paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. Appel, J.D. Heaton Paul and M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011.CrossRef F. Appel, J.D. Heaton Paul and M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011.CrossRef
2.
Zurück zum Zitat X. Wu, Review of Alloy and Process Development of TiAl Alloys, Intermetallics, 2006, 14, p 1114–1122.CrossRef X. Wu, Review of Alloy and Process Development of TiAl Alloys, Intermetallics, 2006, 14, p 1114–1122.CrossRef
3.
Zurück zum Zitat C. Leyens and M. Peters, Titanium and Titanium Alloys, Fundamentals and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003.CrossRef C. Leyens and M. Peters, Titanium and Titanium Alloys, Fundamentals and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003.CrossRef
4.
Zurück zum Zitat K.H. Sim, G. Wang, J.M. Ju, J. Yang and X. Li, Microstructure and Mechanical Properties of a Ti-22Al-25Nb Alloy Fabricated from Elemental Powders by Mechanical Alloying and Spark Plasma Sintering, J. Alloys Compd., 2017, 704, p 425–433.CrossRef K.H. Sim, G. Wang, J.M. Ju, J. Yang and X. Li, Microstructure and Mechanical Properties of a Ti-22Al-25Nb Alloy Fabricated from Elemental Powders by Mechanical Alloying and Spark Plasma Sintering, J. Alloys Compd., 2017, 704, p 425–433.CrossRef
5.
Zurück zum Zitat L. Song, J. Lin and J. Li, Effects of Trace Alloying Elements on the Phase Transformation Behaviors of Ordered ω Phases in High Nb-TiAl Alloys, Mater. Des., 2017, 113, p 47–53.CrossRef L. Song, J. Lin and J. Li, Effects of Trace Alloying Elements on the Phase Transformation Behaviors of Ordered ω Phases in High Nb-TiAl Alloys, Mater. Des., 2017, 113, p 47–53.CrossRef
6.
Zurück zum Zitat M. Li, S. Xiao, L. Xiao, L. Xu, J. Tian and Y. Chen, Effects of Carbon and Boron Addition on Microstructure and Mechanical Properties of TiAl Alloys, J. Alloys Comp., 2017, 728, p 206–221.CrossRef M. Li, S. Xiao, L. Xiao, L. Xu, J. Tian and Y. Chen, Effects of Carbon and Boron Addition on Microstructure and Mechanical Properties of TiAl Alloys, J. Alloys Comp., 2017, 728, p 206–221.CrossRef
7.
Zurück zum Zitat Q. Wang, H. Ding, H. Zhang, R. Chen, J. Guo and H. Fu, Variations of Microstructure and Tensile Property of γ-TiAl Alloys with 0–0.5 at% C Additives, Mater. Sci. Eng. A, 2017, 700, p 198–208.CrossRef Q. Wang, H. Ding, H. Zhang, R. Chen, J. Guo and H. Fu, Variations of Microstructure and Tensile Property of γ-TiAl Alloys with 0–0.5 at% C Additives, Mater. Sci. Eng. A, 2017, 700, p 198–208.CrossRef
8.
Zurück zum Zitat B. Mei and Y. Miyamoto, Investigation of TiAl/Ti2AlC Composites Prepared by Spark Plasma Sintering, Mater. Chem. Phys., 2002, 75, p 291–295.CrossRef B. Mei and Y. Miyamoto, Investigation of TiAl/Ti2AlC Composites Prepared by Spark Plasma Sintering, Mater. Chem. Phys., 2002, 75, p 291–295.CrossRef
9.
Zurück zum Zitat D. Gu, Z. Wang, Y. Shen, Q. Li and Y. Li, In-situ TiC Particle Reinforced Ti–Al matrix Composites: Powder Preparation by Mechanical Alloying and Selective Laser Melting Behavior, Appl. Surf. Sci., 2009, 255, p 9230–9240.CrossRef D. Gu, Z. Wang, Y. Shen, Q. Li and Y. Li, In-situ TiC Particle Reinforced Ti–Al matrix Composites: Powder Preparation by Mechanical Alloying and Selective Laser Melting Behavior, Appl. Surf. Sci., 2009, 255, p 9230–9240.CrossRef
10.
Zurück zum Zitat J. Lapin, A. Klimová, Z. Gabalcová, T. Pelachová, O. Bajana and M. Štamborská, Microstructure and Mechanical Properties of Cast in-situ TiAl Matrix Composites Reinforced with (Ti, Nb)2AlC Particles, Mater. Des., 2017, 133, p 404–415.CrossRef J. Lapin, A. Klimová, Z. Gabalcová, T. Pelachová, O. Bajana and M. Štamborská, Microstructure and Mechanical Properties of Cast in-situ TiAl Matrix Composites Reinforced with (Ti, Nb)2AlC Particles, Mater. Des., 2017, 133, p 404–415.CrossRef
11.
Zurück zum Zitat N. Forouzanmehr, F. Karimzadeh and M.H. Enayati, Synthesis and Characterization of TiAl/Al2O3 Nanocomposite by Mechanical Alloying, J. Alloys Compd., 2009, 478, p 257–259.CrossRef N. Forouzanmehr, F. Karimzadeh and M.H. Enayati, Synthesis and Characterization of TiAl/Al2O3 Nanocomposite by Mechanical Alloying, J. Alloys Compd., 2009, 478, p 257–259.CrossRef
12.
Zurück zum Zitat J. Wang, N. Zhao, P. Nash, E. Liu, C. He, C. Shi and J. Li, In situ Synthesis of Ti2AlC–Al2O3/TiAl Composite by Vacuum Sintering Mechanically Alloyed TiAl Powder Coated with CNTs, J. Alloys Compd., 2013, 578, p 481–487.CrossRef J. Wang, N. Zhao, P. Nash, E. Liu, C. He, C. Shi and J. Li, In situ Synthesis of Ti2AlC–Al2O3/TiAl Composite by Vacuum Sintering Mechanically Alloyed TiAl Powder Coated with CNTs, J. Alloys Compd., 2013, 578, p 481–487.CrossRef
13.
Zurück zum Zitat F. Yang, F.T. Kong, Y.Y. Chen and S.L. Xiao, Effect of Spark Plasma Sintering Temperature on the Microstructure And Mechanical Properties of a Ti2AlC/TiAl Composite, J. Alloys Comp., 2010, 496, p 462–466.CrossRef F. Yang, F.T. Kong, Y.Y. Chen and S.L. Xiao, Effect of Spark Plasma Sintering Temperature on the Microstructure And Mechanical Properties of a Ti2AlC/TiAl Composite, J. Alloys Comp., 2010, 496, p 462–466.CrossRef
14.
Zurück zum Zitat S.R. Kulkarni, A.V. Datye and Wu. Kuang-His, Synthesis of Ti2AlC by Spark Plasma Sintering of TiAl–carbon Nanotube Powder Mixture, J. Alloys Compd., 2010, 490, p 155–159.CrossRef S.R. Kulkarni, A.V. Datye and Wu. Kuang-His, Synthesis of Ti2AlC by Spark Plasma Sintering of TiAl–carbon Nanotube Powder Mixture, J. Alloys Compd., 2010, 490, p 155–159.CrossRef
15.
Zurück zum Zitat A. Mohammadnejad, A. Bahrami, M. Sajadi, P. Karimi, H.R. Fozveh and M. Yazdan Mehr, Microstructure and Mechanical Properties of Spark Plasma Sintered Nanocrystalline Ni3Al-xB (0.0<x<1.5 at%) Alloy, Mater. Today Commun., 2018, 17, p 161–168.CrossRef A. Mohammadnejad, A. Bahrami, M. Sajadi, P. Karimi, H.R. Fozveh and M. Yazdan Mehr, Microstructure and Mechanical Properties of Spark Plasma Sintered Nanocrystalline Ni3Al-xB (0.0<x<1.5 at%) Alloy, Mater. Today Commun., 2018, 17, p 161–168.CrossRef
16.
Zurück zum Zitat S. Huang and E.L. Hall, The Effects of Cr Additions to Binary TiAl-base Alloys, MTA, 1991, 22, p 2619–2627.CrossRef S. Huang and E.L. Hall, The Effects of Cr Additions to Binary TiAl-base Alloys, MTA, 1991, 22, p 2619–2627.CrossRef
17.
Zurück zum Zitat D. Hu, Effect of Boron Addition on Tensile Ductility in Lamellar TiAl Alloys, Intermetallics, 2002, 10, p 851–858.CrossRef D. Hu, Effect of Boron Addition on Tensile Ductility in Lamellar TiAl Alloys, Intermetallics, 2002, 10, p 851–858.CrossRef
18.
Zurück zum Zitat A. Azarniya, A. Azarniya, S. Sovizi, H.R. Madaah Hosseini, T. Varol, A. Kawasaki and S. Ramakrishna, Physicomechanical Properties of Spark Plasma Sintered Carbon Nanotube-reinforced Metal Matrix Nanocomposites, Prog. Mater. Sci., 2017, 468, p 276–324.CrossRef A. Azarniya, A. Azarniya, S. Sovizi, H.R. Madaah Hosseini, T. Varol, A. Kawasaki and S. Ramakrishna, Physicomechanical Properties of Spark Plasma Sintered Carbon Nanotube-reinforced Metal Matrix Nanocomposites, Prog. Mater. Sci., 2017, 468, p 276–324.CrossRef
19.
Zurück zum Zitat S. Miraghaei, P. Abachi, H.R. Madaah-Hosseini and A. Bahrami, Characterization of Mechanically Alloyed Fe100−xSix and Fe835Si135Nb3 Nanocrystalline Powders, J. Mater. Process. Tech., 2008, 203(1–3), p 554–560.CrossRef S. Miraghaei, P. Abachi, H.R. Madaah-Hosseini and A. Bahrami, Characterization of Mechanically Alloyed Fe100−xSix and Fe835Si135Nb3 Nanocrystalline Powders, J. Mater. Process. Tech., 2008, 203(1–3), p 554–560.CrossRef
20.
Zurück zum Zitat S.R. Bakshi, D. Lahiri and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites – A Review, Int. Mater. Rev., 2010, 55, p 41–64.CrossRef S.R. Bakshi, D. Lahiri and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites – A Review, Int. Mater. Rev., 2010, 55, p 41–64.CrossRef
21.
Zurück zum Zitat K. Kondoh, T. Threrujirapapong, J. Umeda and B. Fugetsu, High-Temperature Properties of Extruded Titanium Composites Fabricated From Carbon Nanotubes Coated Titanium Powder by Spark Plasma Sintering and Hot Extrusion, Compd. Sci. Tech., 2012, 72, p 1291–1297.CrossRef K. Kondoh, T. Threrujirapapong, J. Umeda and B. Fugetsu, High-Temperature Properties of Extruded Titanium Composites Fabricated From Carbon Nanotubes Coated Titanium Powder by Spark Plasma Sintering and Hot Extrusion, Compd. Sci. Tech., 2012, 72, p 1291–1297.CrossRef
22.
Zurück zum Zitat F.C. Wang, Z.H. Zhang, Y.J. Sun, Y. Liu, Z.Y. Hu, H. Wang, A.V. Korznikov, E. Korznikova, Z.F. Liu and S. Osamu, Rapid and Low Temperature Spark Plasma Sintering Synthesis of Novel Carbon Nanotube Reinforced Titanium Matrix Composites, Carbon, 2015, 95, p 396–407.CrossRef F.C. Wang, Z.H. Zhang, Y.J. Sun, Y. Liu, Z.Y. Hu, H. Wang, A.V. Korznikov, E. Korznikova, Z.F. Liu and S. Osamu, Rapid and Low Temperature Spark Plasma Sintering Synthesis of Novel Carbon Nanotube Reinforced Titanium Matrix Composites, Carbon, 2015, 95, p 396–407.CrossRef
23.
Zurück zum Zitat P. Mardiha, A. Bahrami and A. Mohammadnejad, Towards a High Strength Ductile Ni/Ni3Al/Ni Multilayer Composite using Spark Plasma Sintering, Sci. Sintering, 2019, 51(4), p 401–408.CrossRef P. Mardiha, A. Bahrami and A. Mohammadnejad, Towards a High Strength Ductile Ni/Ni3Al/Ni Multilayer Composite using Spark Plasma Sintering, Sci. Sintering, 2019, 51(4), p 401–408.CrossRef
24.
Zurück zum Zitat X.W. Li, H.F. Sun, W.B. Fang and Y.F. Ding, Structure and Morphology of Ti-Al Composite Powders Treated By Mechanical Alloying, Trans. Nonferrous Met. Soc. China, 2011, 21, p 338–341.CrossRef X.W. Li, H.F. Sun, W.B. Fang and Y.F. Ding, Structure and Morphology of Ti-Al Composite Powders Treated By Mechanical Alloying, Trans. Nonferrous Met. Soc. China, 2011, 21, p 338–341.CrossRef
25.
Zurück zum Zitat S.X. Mao, N.A. McMinn and N. Wu, Processing and Mechanical Behaviour of TiAl/NiAl Intermetallic Composites Produced by Cryogenic Mechanical Alloying, Mater. Sci. Eng. A, 2003, 363, p 275–289.CrossRef S.X. Mao, N.A. McMinn and N. Wu, Processing and Mechanical Behaviour of TiAl/NiAl Intermetallic Composites Produced by Cryogenic Mechanical Alloying, Mater. Sci. Eng. A, 2003, 363, p 275–289.CrossRef
26.
Zurück zum Zitat N. Forouzanmehr, F. Karimzadeh and M.H. Enayati, Study on Solid-state Reactions of Nanocrystalline TiAl Synthesized by Mechanical Alloying, J. Alloys Compd., 2009, 471, p 93–97.CrossRef N. Forouzanmehr, F. Karimzadeh and M.H. Enayati, Study on Solid-state Reactions of Nanocrystalline TiAl Synthesized by Mechanical Alloying, J. Alloys Compd., 2009, 471, p 93–97.CrossRef
27.
Zurück zum Zitat V.I. Fadeeva, A.V. Leonov, E. Szewczak and H. Matyja, Structural Defects and Thermal Stability of Ti(Al) Solid Solution Obtained by Mechanical Alloying, Mater. Sci. Eng. A, 1998, 242, p 230–234.CrossRef V.I. Fadeeva, A.V. Leonov, E. Szewczak and H. Matyja, Structural Defects and Thermal Stability of Ti(Al) Solid Solution Obtained by Mechanical Alloying, Mater. Sci. Eng. A, 1998, 242, p 230–234.CrossRef
28.
Zurück zum Zitat S.L. Xiao, L.J. Xu, Y.Y. Chen and H.B. Yu, Microstructure and Mechanical Properties of TiAl-based Alloy Prepared by Double Mechanical Milling and Spark Plasma Sintering, Trans. Nonferrous Met. Soc. China, 2012, 22, p 1086–1091.CrossRef S.L. Xiao, L.J. Xu, Y.Y. Chen and H.B. Yu, Microstructure and Mechanical Properties of TiAl-based Alloy Prepared by Double Mechanical Milling and Spark Plasma Sintering, Trans. Nonferrous Met. Soc. China, 2012, 22, p 1086–1091.CrossRef
29.
Zurück zum Zitat F.H. Froes, C. Suryanarayana, K. Russell and C.G. Li, Synthesis of Intermetallics by Mechanical Alloying, Mater. Sci. Eng. A, 1995, 192, p 612–623. F.H. Froes, C. Suryanarayana, K. Russell and C.G. Li, Synthesis of Intermetallics by Mechanical Alloying, Mater. Sci. Eng. A, 1995, 192, p 612–623.
30.
Zurück zum Zitat T. Voisin, J.P. Monchoux, L. Durand, N. Karnatak, M. Thomas and A. Couret, An Innovative Way to Produce γ-TiAl Blades: Spark Plasma Sintering, Adv. Eng. Mater., 2015, 17, p 1408–1413.CrossRef T. Voisin, J.P. Monchoux, L. Durand, N. Karnatak, M. Thomas and A. Couret, An Innovative Way to Produce γ-TiAl Blades: Spark Plasma Sintering, Adv. Eng. Mater., 2015, 17, p 1408–1413.CrossRef
31.
Zurück zum Zitat A. Couret, G. Molenat, J. Galy and M. Thomas, Microstructures and Mechanical Properties of TiAl Alloys Consolidated by Spark Plasma Sintering, Intermetallics, 2008, 16, p 1134–1141.CrossRef A. Couret, G. Molenat, J. Galy and M. Thomas, Microstructures and Mechanical Properties of TiAl Alloys Consolidated by Spark Plasma Sintering, Intermetallics, 2008, 16, p 1134–1141.CrossRef
32.
Zurück zum Zitat R.K. Guduru, K.A. Darling, R. Kishore, R.O. Scattergood, C.C. Koch and K.L. Murty, Evaluation of Mechanical Properties using Shear–Punch Testing, Mater. Sci. Eng. A, 2005, 395, p 307–314.CrossRef R.K. Guduru, K.A. Darling, R. Kishore, R.O. Scattergood, C.C. Koch and K.L. Murty, Evaluation of Mechanical Properties using Shear–Punch Testing, Mater. Sci. Eng. A, 2005, 395, p 307–314.CrossRef
33.
Zurück zum Zitat S. Cao, S. Xiao, Y. Chen, L. Xu, X. Wang, J. Han and Y. Jia, Phase Transformations of the L12-Ti3Al Phase in γ-TiAl Alloy, Mater. Des., 2017, 121, p 61–68.CrossRef S. Cao, S. Xiao, Y. Chen, L. Xu, X. Wang, J. Han and Y. Jia, Phase Transformations of the L12-Ti3Al Phase in γ-TiAl Alloy, Mater. Des., 2017, 121, p 61–68.CrossRef
34.
Zurück zum Zitat H.B. Zhang, B. Wang, Y.T. Zhang, Y. Li, J.L. He and Y.F. Zhang, Influence of Aging Treatment on the Microstructure and Mechanical Properties of CNTs/7075 Al Composites, J. Alloys Compd., 2020, 814, p 152357.CrossRef H.B. Zhang, B. Wang, Y.T. Zhang, Y. Li, J.L. He and Y.F. Zhang, Influence of Aging Treatment on the Microstructure and Mechanical Properties of CNTs/7075 Al Composites, J. Alloys Compd., 2020, 814, p 152357.CrossRef
35.
Zurück zum Zitat A. Mohammadnejad, A. Bahrami, M. Sajadi and M. Yazdan Mehr, Spark Plasma Sintering of Ni3Al-xB-1wt% CNT (0.0 < x < 1.5 at%) Nanocomposite, J. Alloys Compd., 2019, 788, p 461–468.CrossRef A. Mohammadnejad, A. Bahrami, M. Sajadi and M. Yazdan Mehr, Spark Plasma Sintering of Ni3Al-xB-1wt% CNT (0.0 < x < 1.5 at%) Nanocomposite, J. Alloys Compd., 2019, 788, p 461–468.CrossRef
36.
Zurück zum Zitat L. Pang, D. Xing, A. Zhang, J. Xu, J. Zhang and R. Fan, Carbon Nanotube Reinforced Intermetallic, Adv. Compos. Mater., 2012, 19, p 261–267.CrossRef L. Pang, D. Xing, A. Zhang, J. Xu, J. Zhang and R. Fan, Carbon Nanotube Reinforced Intermetallic, Adv. Compos. Mater., 2012, 19, p 261–267.CrossRef
37.
Zurück zum Zitat S. Ameri, Z. Sadeghian and I. Kazeminezhad, Effect of CNT Addition Approach on the Microstructure and Properties of NiAl-CNT Nanocomposites Produced by Mechanical Alloying and Spark Plasma Sintering, Intermetallics, 2016, 76, p 41–48.CrossRef S. Ameri, Z. Sadeghian and I. Kazeminezhad, Effect of CNT Addition Approach on the Microstructure and Properties of NiAl-CNT Nanocomposites Produced by Mechanical Alloying and Spark Plasma Sintering, Intermetallics, 2016, 76, p 41–48.CrossRef
38.
Zurück zum Zitat P. Hvizdoš, P. Tatarko, A. Duszova and J. Dusza, Ceramic nanocomposites, Failure Mechanisms of Ceramic Nanocomposites. Woodhead Publishing Limited, Cambridge, 2013, p 117–152CrossRef P. Hvizdoš, P. Tatarko, A. Duszova and J. Dusza, Ceramic nanocomposites, Failure Mechanisms of Ceramic Nanocomposites. Woodhead Publishing Limited, Cambridge, 2013, p 117–152CrossRef
39.
Zurück zum Zitat C.S. Goh, J. Wei, L.C. Lee and M. Gupta, Simultaneous Enhancement in Strength and Ductility by Reinforcing Magnesium with Carbon Nanotubes, Mater. Sci. Eng. A, 2006, 423, p 153–156.CrossRef C.S. Goh, J. Wei, L.C. Lee and M. Gupta, Simultaneous Enhancement in Strength and Ductility by Reinforcing Magnesium with Carbon Nanotubes, Mater. Sci. Eng. A, 2006, 423, p 153–156.CrossRef
40.
Zurück zum Zitat G. Sauthoff, Intermetallics, Wiley, Federal Republic of Germany, 1995, p 165CrossRef G. Sauthoff, Intermetallics, Wiley, Federal Republic of Germany, 1995, p 165CrossRef
41.
Zurück zum Zitat Y.W. Kim and D.M. Dimiduk, Progress in the Understanding of Gamma Titanium Aluminides, JOM, 1991, 43, p 40–47.CrossRef Y.W. Kim and D.M. Dimiduk, Progress in the Understanding of Gamma Titanium Aluminides, JOM, 1991, 43, p 40–47.CrossRef
Metadaten
Titel
Microstructure and Mechanical Properties of Spark Plasma Sintered Nanocrystalline TiAl-xB Composites (0.0
verfasst von
Ali Mohammadnejad
Abbas Bahrami
Leili Tafaghodi Khajavi
Publikationsdatum
21.04.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05773-6

Weitere Artikel der Ausgabe 6/2021

Journal of Materials Engineering and Performance 6/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.