Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2021

09.06.2021

3D-Printed Electromagnetic Actuator for Bionic Swimming Robot

verfasst von: Changyou Yan, Xiaoqin Zhang, Zhongying Ji, Xiaolong Wang, Feng Zhou

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Three-dimensional printing has received tremendous interest because of the various potential applications in robotics, electronics, aerospace, and biomedicine. Current initiatives in the development of 3D-printed robotics involve soft bionic structures with functional materials. In this paper, a 3D-printed bionic robotic fish has been designed and fabricated by direct ink writing (DIW) 3D printing. The robotic fish consists of four main parts: two-laminated caudal fins, rigid fish body with permanent magnet counted in tail, tiny battery, and controller. The robot is modeled based body/caudal actuation of coaxial circuit actuator. In a driven process, electric energy is transformed into mechanical energy of caudal fins, generating robotic fish swimming movement. With the assistance of 3D printing technique, an underwater robot of well-optimized shape and light weight is manufactured with total size of 200 mm (length) × 50 mm (width) × 30 mm (height). The embedded battery offers power for whole movements, and Arduino controls the waveform of signal. Overall, this robotic fish combines 3D-printed functional structures and embedded electronics in a total compact size with good mobility, showing intensive applications of underwater activities as well as other special tasks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat R.K. Katzschmann, J. DelPreto, R. MacCurdy, and D. Rus, Exploration of Underwater Life with an Acoustically Controlled Soft Robotic Fish, Sci. Robot., 2018, 3(16), p eaar3449.CrossRef R.K. Katzschmann, J. DelPreto, R. MacCurdy, and D. Rus, Exploration of Underwater Life with an Acoustically Controlled Soft Robotic Fish, Sci. Robot., 2018, 3(16), p eaar3449.CrossRef
2.
Zurück zum Zitat P.M. Bhatt, R.K. Malhan, A.V. Shembekar, Y.J. Yoon, and S.K. Gupta, Expanding Capabilities of Additive Manufacturing Through use of Robotics Technologies: A Survey, Addit. Manuf., 2020, 31, p 100933. P.M. Bhatt, R.K. Malhan, A.V. Shembekar, Y.J. Yoon, and S.K. Gupta, Expanding Capabilities of Additive Manufacturing Through use of Robotics Technologies: A Survey, Addit. Manuf., 2020, 31, p 100933.
3.
Zurück zum Zitat Z.E. Teoh, B.T. Phillips, K.P. Becker, G. Whittredge, J.C. Weaver, C. Hoberman, D.F. Gruber, and R.J. Wood, Rotary-Actuated Folding Polyhedrons for Midwater Investigation of Delicate Marine Organisms, Sci. Robot., 2018, 3(20), p eaat5276.CrossRef Z.E. Teoh, B.T. Phillips, K.P. Becker, G. Whittredge, J.C. Weaver, C. Hoberman, D.F. Gruber, and R.J. Wood, Rotary-Actuated Folding Polyhedrons for Midwater Investigation of Delicate Marine Organisms, Sci. Robot., 2018, 3(20), p eaat5276.CrossRef
4.
Zurück zum Zitat D. Cruz-Ortiz, M. Ballesteros-Escamilla, I. Chairez, and A. Luviano, Output Second-order Sliding-mode Control for a Gecko Biomimetic Climbing Robot, J. Bionic Eng., 2019, 16(4), p 633–646.CrossRef D. Cruz-Ortiz, M. Ballesteros-Escamilla, I. Chairez, and A. Luviano, Output Second-order Sliding-mode Control for a Gecko Biomimetic Climbing Robot, J. Bionic Eng., 2019, 16(4), p 633–646.CrossRef
5.
Zurück zum Zitat T. Chen, X. Sun, Z. Xu, Y. Li, X. Rong, and L. Zhou, A Trot and Flying Trot Control Method for Quadruped Robot Based on Optimal Foot Force Distribution, J. Bionic Eng., 2019, 16(4), p 621–632.CrossRef T. Chen, X. Sun, Z. Xu, Y. Li, X. Rong, and L. Zhou, A Trot and Flying Trot Control Method for Quadruped Robot Based on Optimal Foot Force Distribution, J. Bionic Eng., 2019, 16(4), p 621–632.CrossRef
6.
Zurück zum Zitat M.J. Koopaee, S. Bal, C. Pretty, and X. Chen, Design and Development of a Wheel-less Snake Robot with Active Stiffness Control for Adaptive Pedal Wave Locomotion, J. Bionic Eng., 2019, 16(4), p 593–607.CrossRef M.J. Koopaee, S. Bal, C. Pretty, and X. Chen, Design and Development of a Wheel-less Snake Robot with Active Stiffness Control for Adaptive Pedal Wave Locomotion, J. Bionic Eng., 2019, 16(4), p 593–607.CrossRef
7.
Zurück zum Zitat K. J. Cho, E. Hawkes, C. Quinn, and R. J. Wood, Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish, 2008 IEEE International Conference on Robotics and Automation. IEEE, 2008, p 706-711 K. J. Cho, E. Hawkes, C. Quinn, and R. J. Wood, Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish, 2008 IEEE International Conference on Robotics and Automation. IEEE, 2008, p 706-711
8.
Zurück zum Zitat S.Y. Hann, H. Cui, M. Nowicki, and L.G. Zhang, 4D Printing Soft Robotics for Biomedical Applications, Addit. Manuf., 2020, 36, p 101567. S.Y. Hann, H. Cui, M. Nowicki, and L.G. Zhang, 4D Printing Soft Robotics for Biomedical Applications, Addit. Manuf., 2020, 36, p 101567.
9.
Zurück zum Zitat N.W. Bartlett, M.T. Tolley, J.T.B. Overvelde, J.C. Weaver, B. Mosadegh, K. Bertoldi, G.M. Whitesides, and R.J. Wood, A 3D Printed, Functionally Graded Soft Robot Powered by Combustion, Science, 2015, 349(6244), p 161–165.CrossRef N.W. Bartlett, M.T. Tolley, J.T.B. Overvelde, J.C. Weaver, B. Mosadegh, K. Bertoldi, G.M. Whitesides, and R.J. Wood, A 3D Printed, Functionally Graded Soft Robot Powered by Combustion, Science, 2015, 349(6244), p 161–165.CrossRef
10.
Zurück zum Zitat M.A. Graule, P. Chirarattananon, S.B. Fuller, N.T. Jafferis, K.Y. Ma, M. Spenko, R. Kornbluh, and R.J. Wood, Perching and Takeoff of a Robotic Insect on Overhangs Using Switchable Electrostatic Adhesion, Science, 2016, 352(6288), p 978–982.CrossRef M.A. Graule, P. Chirarattananon, S.B. Fuller, N.T. Jafferis, K.Y. Ma, M. Spenko, R. Kornbluh, and R.J. Wood, Perching and Takeoff of a Robotic Insect on Overhangs Using Switchable Electrostatic Adhesion, Science, 2016, 352(6288), p 978–982.CrossRef
11.
Zurück zum Zitat D.W. Haldane, M.M. Plecnik, J.K. Yim, and R.S. Fearing, Fearing, Robotic Vertical Jumping Agility via Series-Elastic Power Modulation, Sci. Robot., 2016, 1(1), p eaag2048.CrossRef D.W. Haldane, M.M. Plecnik, J.K. Yim, and R.S. Fearing, Fearing, Robotic Vertical Jumping Agility via Series-Elastic Power Modulation, Sci. Robot., 2016, 1(1), p eaag2048.CrossRef
12.
Zurück zum Zitat D.G. Tamay, T.D. Usal, A.S. Alagoz, D. Yucel, N. Hasirci, and V. Hasirci, 3D and 4D Printing of Polymers for Tissue Engineering Applications, Front. Bioeng. Biotechnol., 2019, 7, p 164.CrossRef D.G. Tamay, T.D. Usal, A.S. Alagoz, D. Yucel, N. Hasirci, and V. Hasirci, 3D and 4D Printing of Polymers for Tissue Engineering Applications, Front. Bioeng. Biotechnol., 2019, 7, p 164.CrossRef
13.
Zurück zum Zitat Q. Li, J. Zhang, Q. Li, G. Li, X. Tian, Z. Luo, F. Qiao, X. Wu, and J. Zhang, Review of Printed Electrodes for Flexible Devices, Front. Mater., 2019, 5, p 77.CrossRef Q. Li, J. Zhang, Q. Li, G. Li, X. Tian, Z. Luo, F. Qiao, X. Wu, and J. Zhang, Review of Printed Electrodes for Flexible Devices, Front. Mater., 2019, 5, p 77.CrossRef
14.
Zurück zum Zitat M. Schaffner, J.A. Faber, L. Pianegonda, P.A. Rühs, F. Coulter, and A.R. Studart, 3D Printing of Robotic Soft Actuators with Programmable Bioinspired Architectures, Nat. Commun., 2018, 9(1), p 878.CrossRef M. Schaffner, J.A. Faber, L. Pianegonda, P.A. Rühs, F. Coulter, and A.R. Studart, 3D Printing of Robotic Soft Actuators with Programmable Bioinspired Architectures, Nat. Commun., 2018, 9(1), p 878.CrossRef
15.
Zurück zum Zitat Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y.-G. Jung, J.-H. Lee, and J. Zhang, Additive Manufacturing of Metallic Materials: A Review, J. Mater. Eng. Perform., 2017, 27(1), p 1–13.CrossRef Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y.-G. Jung, J.-H. Lee, and J. Zhang, Additive Manufacturing of Metallic Materials: A Review, J. Mater. Eng. Perform., 2017, 27(1), p 1–13.CrossRef
16.
Zurück zum Zitat H. Yin, J. Zhou, J. Li, and V.S. Joseph, Fabrication and Properties of Composite Artificial Muscles Based on Nylon and a Shape Memory Alloy, J. Mater. Eng. Perform., 2018, 27(7), p 3581–3589.CrossRef H. Yin, J. Zhou, J. Li, and V.S. Joseph, Fabrication and Properties of Composite Artificial Muscles Based on Nylon and a Shape Memory Alloy, J. Mater. Eng. Perform., 2018, 27(7), p 3581–3589.CrossRef
17.
Zurück zum Zitat R. Bernasconi, E. Carrara, M. Hoop, F. Mushtaq, X. Chen, B.J. Nelson, S. Pané, C. Credi, M. Levi, and L. Magagnin, Magnetically Navigable 3D Printed Multifunctional Microdevices for Environmental Applications, Addit. Manuf., 2019, 28, p 127–135. R. Bernasconi, E. Carrara, M. Hoop, F. Mushtaq, X. Chen, B.J. Nelson, S. Pané, C. Credi, M. Levi, and L. Magagnin, Magnetically Navigable 3D Printed Multifunctional Microdevices for Environmental Applications, Addit. Manuf., 2019, 28, p 127–135.
18.
Zurück zum Zitat T.J. Wallin, J. Pikul, and R.F. Shepherd, 3D Printing of Soft Robotic Systems, Nat. Rev. Mater., 2018, 3(6), p 84–100.CrossRef T.J. Wallin, J. Pikul, and R.F. Shepherd, 3D Printing of Soft Robotic Systems, Nat. Rev. Mater., 2018, 3(6), p 84–100.CrossRef
19.
Zurück zum Zitat D. Rus and M.T. Tolley, Design, Fabrication and Control of Soft Robots, Nature, 2015, 521(7553), p 467–475.CrossRef D. Rus and M.T. Tolley, Design, Fabrication and Control of Soft Robots, Nature, 2015, 521(7553), p 467–475.CrossRef
20.
Zurück zum Zitat D. Hua, X. Zhang, Z. Ji, C. Yan, B. Yu, Y. Li, X. Wang, and F. Zhou, 3D Printing of Shape Changing Composites for Constructing Flexible Paper-Based Photothermal Bilayer Actuators, J. Mater. Chem. C, 2018, 6(8), p 2123–2131.CrossRef D. Hua, X. Zhang, Z. Ji, C. Yan, B. Yu, Y. Li, X. Wang, and F. Zhou, 3D Printing of Shape Changing Composites for Constructing Flexible Paper-Based Photothermal Bilayer Actuators, J. Mater. Chem. C, 2018, 6(8), p 2123–2131.CrossRef
21.
Zurück zum Zitat Z. Ji, C. Yan, B. Yu, X. Wang, and F. Zhou, Multimaterials 3D Printing for Free Assembly Manufacturing of Magnetic Driving Soft Actuator, Adv. Mater. Inter., 2017, 4(22), p 1700629.CrossRef Z. Ji, C. Yan, B. Yu, X. Wang, and F. Zhou, Multimaterials 3D Printing for Free Assembly Manufacturing of Magnetic Driving Soft Actuator, Adv. Mater. Inter., 2017, 4(22), p 1700629.CrossRef
22.
Zurück zum Zitat B. Rankouhi, S. Javadpour, F. Delfanian, R. McTaggart, and T. Letcher, Experimental Investigation of Mechanical Performance and Printability of Gamma-Irradiated Additively Manufactured ABS, J. Mater. Eng. Perform., 2018, 27(7), p 3643–3654.CrossRef B. Rankouhi, S. Javadpour, F. Delfanian, R. McTaggart, and T. Letcher, Experimental Investigation of Mechanical Performance and Printability of Gamma-Irradiated Additively Manufactured ABS, J. Mater. Eng. Perform., 2018, 27(7), p 3643–3654.CrossRef
23.
Zurück zum Zitat K. Fu, Y. Yao, J. Dai, and L. Hu, Progress in 3D Printing of Carbon Materials for Energy-Related Applications, Adv. Mater., 2017, 29(9), p 1603486.CrossRef K. Fu, Y. Yao, J. Dai, and L. Hu, Progress in 3D Printing of Carbon Materials for Energy-Related Applications, Adv. Mater., 2017, 29(9), p 1603486.CrossRef
24.
Zurück zum Zitat Y.L. Kong, M.K. Gupta, B.N. Johnson, and M.C. McAlpine, 3D Printed Bionic Nanodevices, Nano Today, 2016, 11(3), p 330–350.CrossRef Y.L. Kong, M.K. Gupta, B.N. Johnson, and M.C. McAlpine, 3D Printed Bionic Nanodevices, Nano Today, 2016, 11(3), p 330–350.CrossRef
25.
Zurück zum Zitat X. Liu, H. Yuk, S. Lin, G.A. Parada, T.C. Tang, E. Tham, C. de la Fuente-Nunez, T.K. Lu, and X. Zhao, 3D Printing of Living Responsive Materials and Devices, Adv. Mater., 2018, 30(4), p 1704821.CrossRef X. Liu, H. Yuk, S. Lin, G.A. Parada, T.C. Tang, E. Tham, C. de la Fuente-Nunez, T.K. Lu, and X. Zhao, 3D Printing of Living Responsive Materials and Devices, Adv. Mater., 2018, 30(4), p 1704821.CrossRef
26.
Zurück zum Zitat Z.Y. Ji, C.Y. Yan, B. Yu, X.Q. Zhang, M.R. Cai, X. Jia, X.L. Wang, and F. Zhou, 3D Printing of Hydrogel Architectures with Complex and Controllable Shape Deformation, Adv. Mater. Technol., 2019, 4(4), p 1800713.CrossRef Z.Y. Ji, C.Y. Yan, B. Yu, X.Q. Zhang, M.R. Cai, X. Jia, X.L. Wang, and F. Zhou, 3D Printing of Hydrogel Architectures with Complex and Controllable Shape Deformation, Adv. Mater. Technol., 2019, 4(4), p 1800713.CrossRef
27.
Zurück zum Zitat T. Wu, P. Jiang, Z. Ji, Y. Guo, X. Wang, F. Zhou, and W. Liu, 3D Printing of High-Performance Isocyanate Ester Thermosets, Macro. Mater. Eng., 2020, 305, p 2000397.CrossRef T. Wu, P. Jiang, Z. Ji, Y. Guo, X. Wang, F. Zhou, and W. Liu, 3D Printing of High-Performance Isocyanate Ester Thermosets, Macro. Mater. Eng., 2020, 305, p 2000397.CrossRef
28.
Zurück zum Zitat P. Jiang, C. Yan, Z. Ji, Y. Guo, X. Zhang, X. Jia, X. Wang, and F. Zhou, Drawing High-Definition and Reversible Hydrogel Paintings with Grayscale Exposure, ACS Appl. Mater. Inter., 2019, 11(45), p 42586–42593.CrossRef P. Jiang, C. Yan, Z. Ji, Y. Guo, X. Zhang, X. Jia, X. Wang, and F. Zhou, Drawing High-Definition and Reversible Hydrogel Paintings with Grayscale Exposure, ACS Appl. Mater. Inter., 2019, 11(45), p 42586–42593.CrossRef
29.
Zurück zum Zitat Y. Zhang, F. Zhang, Z. Yan, Q. Ma, X. Li, Y. Huang, and J.A. Rogers, Printing, Folding and Assembly Methods for Forming 3D Mesostructures in Advanced Materials, Nat. Rev. Mater., 2017, 2(4), p 17019.CrossRef Y. Zhang, F. Zhang, Z. Yan, Q. Ma, X. Li, Y. Huang, and J.A. Rogers, Printing, Folding and Assembly Methods for Forming 3D Mesostructures in Advanced Materials, Nat. Rev. Mater., 2017, 2(4), p 17019.CrossRef
30.
Zurück zum Zitat Y. Cheng, X. Shi, X. Jiang, X. Wang, and H. Qin, Printability of a Cellulose Derivative for Extrusion-Based 3D Printing: The Application on a Biodegradable Support Material, Front. Mater., 2020, 7, p 86.CrossRef Y. Cheng, X. Shi, X. Jiang, X. Wang, and H. Qin, Printability of a Cellulose Derivative for Extrusion-Based 3D Printing: The Application on a Biodegradable Support Material, Front. Mater., 2020, 7, p 86.CrossRef
32.
Zurück zum Zitat U. Scheithauer, R. Johne, S. Weingarten, E. Schwarzer, H.-J. Richter, T. Moritz, and A. Michaelis, Investigation of Droplet Deposition for Suspensions Usable for Thermoplastic 3D Printing (T3DP), J. Mater. Eng. Perform, 2017, 27(1), p 44–51.CrossRef U. Scheithauer, R. Johne, S. Weingarten, E. Schwarzer, H.-J. Richter, T. Moritz, and A. Michaelis, Investigation of Droplet Deposition for Suspensions Usable for Thermoplastic 3D Printing (T3DP), J. Mater. Eng. Perform, 2017, 27(1), p 44–51.CrossRef
33.
Zurück zum Zitat S.Z. Guo, K. Qiu, F. Meng, S.H. Park, and M.C. McAlpine, 3D Printed Stretchable Tactile Sensors, Adv. Mater., 2017, 29(27), p 1701218.CrossRef S.Z. Guo, K. Qiu, F. Meng, S.H. Park, and M.C. McAlpine, 3D Printed Stretchable Tactile Sensors, Adv. Mater., 2017, 29(27), p 1701218.CrossRef
34.
Zurück zum Zitat A.D. Valentine, T.A. Busbee, J.W. Boley, J.R. Raney, A. Chortos, A. Kotikian, J.D. Berrigan, M.F. Durstock, and J.A. Lewis, Hybrid 3D Printing of Soft Electronics, Adv. Mater., 2017, 29(40), p 1703817.CrossRef A.D. Valentine, T.A. Busbee, J.W. Boley, J.R. Raney, A. Chortos, A. Kotikian, J.D. Berrigan, M.F. Durstock, and J.A. Lewis, Hybrid 3D Printing of Soft Electronics, Adv. Mater., 2017, 29(40), p 1703817.CrossRef
35.
Zurück zum Zitat E. Masaeli and C. Marquette, Direct-Write Bioprinting Approach to Construct Multilayer Cellular Tissues, Front. Bioeng. Biotechnol., 2020, 7, p 478.CrossRef E. Masaeli and C. Marquette, Direct-Write Bioprinting Approach to Construct Multilayer Cellular Tissues, Front. Bioeng. Biotechnol., 2020, 7, p 478.CrossRef
36.
Zurück zum Zitat R. Natividad, M. Del Rosario, and Jr., P.C.Y. Chen, C.H. Yeow, , A Reconfigurable Pneumatic Bending Actuator with Replaceable Inflation Modules, Soft Robot., 2018, 5(3), p 304–317.CrossRef R. Natividad, M. Del Rosario, and Jr., P.C.Y. Chen, C.H. Yeow, , A Reconfigurable Pneumatic Bending Actuator with Replaceable Inflation Modules, Soft Robot., 2018, 5(3), p 304–317.CrossRef
37.
Zurück zum Zitat Y. Kim, H. Yuk, R. Zhao, S.A. Chester, and X. Zhao, Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials, Nature, 2018, 558(7709), p 274–279.CrossRef Y. Kim, H. Yuk, R. Zhao, S.A. Chester, and X. Zhao, Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials, Nature, 2018, 558(7709), p 274–279.CrossRef
38.
Zurück zum Zitat S. Roh, L.B. Okello, N. Golbasi, J.P. Hankwitz, J.A.C. Liu, J.B. Tracy, and O.D. Velev, 3D Printed Silicone Soft Architectures with Programmed Magneto-Capillary Reconfiguration, Adv. Mater. Technol., 2019, 4(4), p 1800528.CrossRef S. Roh, L.B. Okello, N. Golbasi, J.P. Hankwitz, J.A.C. Liu, J.B. Tracy, and O.D. Velev, 3D Printed Silicone Soft Architectures with Programmed Magneto-Capillary Reconfiguration, Adv. Mater. Technol., 2019, 4(4), p 1800528.CrossRef
39.
Zurück zum Zitat T.N. Do, H. Phan, T.-Q. Nguyen, and Y. Visell, Miniature Soft Electromagnetic Actuators for Robotic Applications, Adv. Funct. Mater., 2018, 28(18), p 1800244.CrossRef T.N. Do, H. Phan, T.-Q. Nguyen, and Y. Visell, Miniature Soft Electromagnetic Actuators for Robotic Applications, Adv. Funct. Mater., 2018, 28(18), p 1800244.CrossRef
40.
Zurück zum Zitat S.K. Romberg, M. Islam, C.J. Hershey, M. DeVinney, C.E. Duty, V. Kunc, and B.G. Compton, Linking Thermoset Ink Rheology to the Stability of 3D Printed Structures, Addit. Manuf., 2020, 37, p 101621. S.K. Romberg, M. Islam, C.J. Hershey, M. DeVinney, C.E. Duty, V. Kunc, and B.G. Compton, Linking Thermoset Ink Rheology to the Stability of 3D Printed Structures, Addit. Manuf., 2020, 37, p 101621.
41.
Zurück zum Zitat J.R.C. Dizon, A.H. Espera, Q. Chen, and R.C. Advincula, Mechanical Characterization of 3D Printed Polymers, Addit. Manuf., 2018, 20, p 44–67. J.R.C. Dizon, A.H. Espera, Q. Chen, and R.C. Advincula, Mechanical Characterization of 3D Printed Polymers, Addit. Manuf., 2018, 20, p 44–67.
42.
Zurück zum Zitat W.-S. Chu, K.-T. Lee, S.-H. Song, M.-W. Han, J.-Y. Lee, H.-S. Kim, M.-S. Kim, Y.-J. Park, K.-J. Cho, and S.-H. Ahn, Review of Biomimetic Underwater Robots Using Smart Actuators, Inter. J. Precis. Eng. Manuf., 2012, 13(7), p 1281–1292.CrossRef W.-S. Chu, K.-T. Lee, S.-H. Song, M.-W. Han, J.-Y. Lee, H.-S. Kim, M.-S. Kim, Y.-J. Park, K.-J. Cho, and S.-H. Ahn, Review of Biomimetic Underwater Robots Using Smart Actuators, Inter. J. Precis. Eng. Manuf., 2012, 13(7), p 1281–1292.CrossRef
43.
Zurück zum Zitat L. Dai, G. He, X. Zhang, and X. Zhang, Intermittent Locomotion of a Fish-Like Swimmer Driven by Passive Elastic Mechanism, Bioinspir. Biomim., 2018, 13(5), p 056011.CrossRef L. Dai, G. He, X. Zhang, and X. Zhang, Intermittent Locomotion of a Fish-Like Swimmer Driven by Passive Elastic Mechanism, Bioinspir. Biomim., 2018, 13(5), p 056011.CrossRef
44.
Zurück zum Zitat J.E. Colgate and K.M. Lynch, Mechanics and Control of Swimming: A Review, IEEE J. Ocean. Eng., 2004, 29(3), p 660–673.CrossRef J.E. Colgate and K.M. Lynch, Mechanics and Control of Swimming: A Review, IEEE J. Ocean. Eng., 2004, 29(3), p 660–673.CrossRef
45.
Zurück zum Zitat M. Sfakiotakis, D.M. Lane, and J.B.C. Davies, Review of Fish Swimming Modes for Aquatic Locomotion, IEEE J. Ocean. Eng., 1999, 24(2), p 237–252.CrossRef M. Sfakiotakis, D.M. Lane, and J.B.C. Davies, Review of Fish Swimming Modes for Aquatic Locomotion, IEEE J. Ocean. Eng., 1999, 24(2), p 237–252.CrossRef
Metadaten
Titel
3D-Printed Electromagnetic Actuator for Bionic Swimming Robot
verfasst von
Changyou Yan
Xiaoqin Zhang
Zhongying Ji
Xiaolong Wang
Feng Zhou
Publikationsdatum
09.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05918-7

Weitere Artikel der Ausgabe 9/2021

Journal of Materials Engineering and Performance 9/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.