Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2021

24.06.2021

Effect of WC Composition on the Microstructure and Surface Properties of Laser Directed Energy Deposited SS 316-WC Composites

verfasst von: K. Benarji, Y. Ravi kumar, A. N. Jinoop, C. P. Paul, K. S. Bindra

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper reports an investigation on SS 316-tungsten carbide (WC) composites built using laser-directed energy deposition by varying the WC volume fraction from 6 to 10%. The built structures are subjected to characterization to investigate the effect of WC on the relative density, microstructure, microhardness and tribological properties of SS 316-WC composites. It is observed that the relative density of composite reduces with an increase in the volume fraction of WC particles. The microstructure is primarily dendritic, and XRD analysis revealed the presence of WC and \(\gamma\)Fe phases with minimum crystallite size of 18.82 nm at 10% of WC in SS 316. The improvement in corrosion resistance is identified with the addition of WC, and least current density of \(1.47\frac{{{\rm{\mu A}}}}{{{\rm{cm}}^{2} }}\) is identified with 8% of WC. The microhardness of composite is observed to increase with an increase in the WC content and the wear rate is observed to reduce with an increase in WC content. Maximum hardness of 399.5 HV0.98N and minimum wear rate of 0.03107 × 10−4 mm3/Nm are obtained at 10% of WC. Scanning electron microscopy images indicate the presence of parallel grooves, wear debris and plastic deformation on the wear tracks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.N. Jinoop, C.P. Paula, S.K. Mishra and K.S. Bindra, Laser Additive Manufacturing using Directed Energy Deposition of Inconel- 718 Wall Structures with Tailored Characteristics, Vacuum, 2019, 166, p 270–278.CrossRef A.N. Jinoop, C.P. Paula, S.K. Mishra and K.S. Bindra, Laser Additive Manufacturing using Directed Energy Deposition of Inconel- 718 Wall Structures with Tailored Characteristics, Vacuum, 2019, 166, p 270–278.CrossRef
2.
Zurück zum Zitat W.E. FraZier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23, p 1917–1928.CrossRef W.E. FraZier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23, p 1917–1928.CrossRef
3.
Zurück zum Zitat J.S. Xu, X.C. Zhang, F.Z. Xuan, Z.D. Wang and S.T. Tu, Microstructure and Sliding Wear Resistance of Laser Cladded WC/Ni Composite Coatings with Different Contents of WC Particle, J. Mater. Eng. Perform., 2012, 21, p 1904–1911.CrossRef J.S. Xu, X.C. Zhang, F.Z. Xuan, Z.D. Wang and S.T. Tu, Microstructure and Sliding Wear Resistance of Laser Cladded WC/Ni Composite Coatings with Different Contents of WC Particle, J. Mater. Eng. Perform., 2012, 21, p 1904–1911.CrossRef
4.
Zurück zum Zitat C.L. Wu, S. Zhang, C.H. Zhang, J.B. Zhang, Y. Liu and J. Chen, Effects of SiC Content on Phase Evolution and Corrosion Behavior of SiC-Reinforced 316L Stainless Steel Matrix Composites by Laser melting Deposition, Opt. Laser. Technol., 2019, 115, p 134–139.CrossRef C.L. Wu, S. Zhang, C.H. Zhang, J.B. Zhang, Y. Liu and J. Chen, Effects of SiC Content on Phase Evolution and Corrosion Behavior of SiC-Reinforced 316L Stainless Steel Matrix Composites by Laser melting Deposition, Opt. Laser. Technol., 2019, 115, p 134–139.CrossRef
5.
Zurück zum Zitat P.K. Farayibi, T.E. Abioye, A. Kennedy and A.T. Clare, Development of Metal Matrix Composites by Direct Energy Deposition of ‘Satellited’ Powders, J. Manuf. Process., 2019, 45, p 429–437.CrossRef P.K. Farayibi, T.E. Abioye, A. Kennedy and A.T. Clare, Development of Metal Matrix Composites by Direct Energy Deposition of ‘Satellited’ Powders, J. Manuf. Process., 2019, 45, p 429–437.CrossRef
6.
Zurück zum Zitat M. Masanta, S.M. Shariff and A. Roy Choudhury, A Comparative Study of the Tribological Performances of Laser Clad TiB2-TiC-Al2O3 Composite Coatings on AISI 1020 and AISI 304 Substrates, Wear, 2011, 271, p 1124–1133.CrossRef M. Masanta, S.M. Shariff and A. Roy Choudhury, A Comparative Study of the Tribological Performances of Laser Clad TiB2-TiC-Al2O3 Composite Coatings on AISI 1020 and AISI 304 Substrates, Wear, 2011, 271, p 1124–1133.CrossRef
7.
Zurück zum Zitat S. Pouzet, P. Peyre, C. Gorny, O. Castelnau, T. Baudin and F. Brisset, Additive Layer Manufacturing of Titanium Matrix Composites using the Direct Metal Deposition Laser process, Mater. Sci. Eng. A, 2016, 677, p 171–181.CrossRef S. Pouzet, P. Peyre, C. Gorny, O. Castelnau, T. Baudin and F. Brisset, Additive Layer Manufacturing of Titanium Matrix Composites using the Direct Metal Deposition Laser process, Mater. Sci. Eng. A, 2016, 677, p 171–181.CrossRef
8.
Zurück zum Zitat P. Xu, C.X. Lin, C.Y. Zhou and X.P. Yi, Wear and Corrosion Resistance of Laser Cladding AISI 304 Stainless Steel/Al2O3 Composite Coatings, Surf. Coat. Technol., 2014, 238, p 9–14.CrossRef P. Xu, C.X. Lin, C.Y. Zhou and X.P. Yi, Wear and Corrosion Resistance of Laser Cladding AISI 304 Stainless Steel/Al2O3 Composite Coatings, Surf. Coat. Technol., 2014, 238, p 9–14.CrossRef
9.
Zurück zum Zitat C.P. Paul, S.K. Mishra, P. Tiwari and L.M. Kukreja, Solid-Particle Erosion Behaviour of WC-Ni Composite Clad layers with Different Contents of WC Particles, Opt. Laser. Technol., 2013, 50, p 155–162.CrossRef C.P. Paul, S.K. Mishra, P. Tiwari and L.M. Kukreja, Solid-Particle Erosion Behaviour of WC-Ni Composite Clad layers with Different Contents of WC Particles, Opt. Laser. Technol., 2013, 50, p 155–162.CrossRef
10.
Zurück zum Zitat C.M. Lin, Functional COMPOSITE Metal for WC-Dispersed 304L Stainless Steel Matrix Composite with Alloying by Direct Laser: Microstructure, Hardness and fracture Toughness, Vacuum, 2015, 121, p 96–104.CrossRef C.M. Lin, Functional COMPOSITE Metal for WC-Dispersed 304L Stainless Steel Matrix Composite with Alloying by Direct Laser: Microstructure, Hardness and fracture Toughness, Vacuum, 2015, 121, p 96–104.CrossRef
11.
Zurück zum Zitat X. Li, C.H. Zhang, S. Zhang, C.L. Wu, J.B. Zhang, H.T. Chen and O. Adil Abdullah, Design, Preparation, Microstructure and Properties of Novel Wear-Resistant Stainless Steel-Based composites using Laser Melting deposition, Vacuum, 2019, 165, p 139–147.CrossRef X. Li, C.H. Zhang, S. Zhang, C.L. Wu, J.B. Zhang, H.T. Chen and O. Adil Abdullah, Design, Preparation, Microstructure and Properties of Novel Wear-Resistant Stainless Steel-Based composites using Laser Melting deposition, Vacuum, 2019, 165, p 139–147.CrossRef
12.
Zurück zum Zitat A.I. Gorunov, Investigation Microstructure of Carbon Fibers Reinforced Composite on Fe and Ni-Based Obtained by Laser Metal Deposition, Surf. Coat. Technol., 2019, 364, p 279–288.CrossRef A.I. Gorunov, Investigation Microstructure of Carbon Fibers Reinforced Composite on Fe and Ni-Based Obtained by Laser Metal Deposition, Surf. Coat. Technol., 2019, 364, p 279–288.CrossRef
13.
Zurück zum Zitat S. Cao and D. Gu, Laser Metal Deposition Additive Manufacturing of TiC/Inconel 625 Nanocomposites: Relation of Densification, Microstructures and Performance, J. Mater. Res., 2015, 30, p 3616–3628.CrossRef S. Cao and D. Gu, Laser Metal Deposition Additive Manufacturing of TiC/Inconel 625 Nanocomposites: Relation of Densification, Microstructures and Performance, J. Mater. Res., 2015, 30, p 3616–3628.CrossRef
14.
Zurück zum Zitat I. Shishkovsky, F. Missemer and I. Smurov, Metal Matrix Composites with Ternary Intermetallic Inclusions Fabricated by Laser Direct Energy Deposition, Compos. Struct., 2018, 183, p 663–670.CrossRef I. Shishkovsky, F. Missemer and I. Smurov, Metal Matrix Composites with Ternary Intermetallic Inclusions Fabricated by Laser Direct Energy Deposition, Compos. Struct., 2018, 183, p 663–670.CrossRef
15.
Zurück zum Zitat A. Ramakrishnan and G.P. Dinda, Microstructural Control of an Al–W Aluminum Matrix Composite during Direct Laser Metal deposition, J Alloys Compd, 2020, 813, p 152208.CrossRef A. Ramakrishnan and G.P. Dinda, Microstructural Control of an Al–W Aluminum Matrix Composite during Direct Laser Metal deposition, J Alloys Compd, 2020, 813, p 152208.CrossRef
16.
Zurück zum Zitat J.C. Betts, B.L. Mordike and M. Grech, Characterisation, Wear and Corrosion Testing of Laser-Deposited AISI 316 Reinforced with Ceramic Particles, Surf. Eng., 2010, 26, p 21–29.CrossRef J.C. Betts, B.L. Mordike and M. Grech, Characterisation, Wear and Corrosion Testing of Laser-Deposited AISI 316 Reinforced with Ceramic Particles, Surf. Eng., 2010, 26, p 21–29.CrossRef
17.
Zurück zum Zitat J.C. Li, X. Lin, N. Kang, J.L. Lu, Q.Z. Wang and W.D. Huang, Microstructure, Tensile and Wear Properties of a Novel Graded Al Matrix Composite Prepared by Direct Energy Deposition, J Alloys Compd, 2020, 826, p 154077.CrossRef J.C. Li, X. Lin, N. Kang, J.L. Lu, Q.Z. Wang and W.D. Huang, Microstructure, Tensile and Wear Properties of a Novel Graded Al Matrix Composite Prepared by Direct Energy Deposition, J Alloys Compd, 2020, 826, p 154077.CrossRef
18.
Zurück zum Zitat Y. Huang, D. Wu, D. Zhao, F. Niu, H. Zhang and S. Yan, Process Optimization of Melt Growth Alumina/Aluminum Titanate Composites Directed Energy Deposition: Effects of Scanning Speed, Addit. Manuf., 2020, 35, p 101210. Y. Huang, D. Wu, D. Zhao, F. Niu, H. Zhang and S. Yan, Process Optimization of Melt Growth Alumina/Aluminum Titanate Composites Directed Energy Deposition: Effects of Scanning Speed, Addit. Manuf., 2020, 35, p 101210.
19.
Zurück zum Zitat Y. Liu, M. Tang, Q. Hu, Y. Zhang and L. Zhang, Densification Behavior, Microstructural Evolution, and Mechanical Properties of TiC/AISI420 Stainless Steel Composites Fabricated by Selective Laser Melting, Mater. Des, 2020, 187, p 108381.CrossRef Y. Liu, M. Tang, Q. Hu, Y. Zhang and L. Zhang, Densification Behavior, Microstructural Evolution, and Mechanical Properties of TiC/AISI420 Stainless Steel Composites Fabricated by Selective Laser Melting, Mater. Des, 2020, 187, p 108381.CrossRef
20.
Zurück zum Zitat D. Gu, J. Ma, H. Chen, K. Lin and L. Xi, Laser Additive Manufactured WC Reinforced Fe-Based Composites with Gradient Reinforcement/Matrix Interface and Enhanced Performance, Compos. Struct., 2018, 192, p 387–396.CrossRef D. Gu, J. Ma, H. Chen, K. Lin and L. Xi, Laser Additive Manufactured WC Reinforced Fe-Based Composites with Gradient Reinforcement/Matrix Interface and Enhanced Performance, Compos. Struct., 2018, 192, p 387–396.CrossRef
21.
Zurück zum Zitat N. Kang, W. Ma, F. Li, H. Liao, M. Liu and C. Coddet, Microstructure and Wear Properties of Selective Laser Melted WC Reinforced 18Ni-300 Steel Matrix Composite, Vacuum, 2018, 154, p 69–74.CrossRef N. Kang, W. Ma, F. Li, H. Liao, M. Liu and C. Coddet, Microstructure and Wear Properties of Selective Laser Melted WC Reinforced 18Ni-300 Steel Matrix Composite, Vacuum, 2018, 154, p 69–74.CrossRef
22.
Zurück zum Zitat R.F. Santos, A.M. Ferro Rocha, A.C. Bastos, J.P. Cardoso, F. Rodrigues, C.M. Fernandesb, J. Sacramento, M.G.S. Ferreira, A.M.R. Senos, C. Fonseca, M.F. Vieira and L.F. Malheiros, Microstructural Characterization and Corrosion resistance of WC-Ni-Cr-Mo Composite – The Effect of Mo, Int. J. Refract. Hard Met., 2020, 86, p 105090.CrossRef R.F. Santos, A.M. Ferro Rocha, A.C. Bastos, J.P. Cardoso, F. Rodrigues, C.M. Fernandesb, J. Sacramento, M.G.S. Ferreira, A.M.R. Senos, C. Fonseca, M.F. Vieira and L.F. Malheiros, Microstructural Characterization and Corrosion resistance of WC-Ni-Cr-Mo Composite – The Effect of Mo, Int. J. Refract. Hard Met., 2020, 86, p 105090.CrossRef
23.
Zurück zum Zitat R. Gupta and V. Pratap Singh, Determination of Mechanical Properties and Physical Characterization of HA-ZnO- Fe3O4 Composites for Implant Applications, J. Mater. Eng. Perform., 2021, 30(2), p 955.CrossRef R. Gupta and V. Pratap Singh, Determination of Mechanical Properties and Physical Characterization of HA-ZnO- Fe3O4 Composites for Implant Applications, J. Mater. Eng. Perform., 2021, 30(2), p 955.CrossRef
24.
Zurück zum Zitat Y. Huang, X. Shi, X. Liu, Z. Yan and X. Deng, Tribological Performance of Ni3Al Matrix Composites Synthesized by Laser Melt Deposition Under Different Scanning Velocities, J. Mater. Eng. Perform., 2018, 27, p p1962-1972.CrossRef Y. Huang, X. Shi, X. Liu, Z. Yan and X. Deng, Tribological Performance of Ni3Al Matrix Composites Synthesized by Laser Melt Deposition Under Different Scanning Velocities, J. Mater. Eng. Perform., 2018, 27, p p1962-1972.CrossRef
25.
Zurück zum Zitat D.S. Prasad, C. Shoba and N. Ramanaiah, Investigations on Mechanical Properties of Aluminum Hybrid Composites, J. Mater. Res., 2014, 3, p p79-85. D.S. Prasad, C. Shoba and N. Ramanaiah, Investigations on Mechanical Properties of Aluminum Hybrid Composites, J. Mater. Res., 2014, 3, p p79-85.
26.
Zurück zum Zitat M. Hussain, V. Mandal, V. Kumar, A.K. Das and S.K. Ghosh, Development of TiN Particulates Reinforced SS316 Based Metal Matrix Composite by Direct Metal Laser Sintering Technique and its Characterization, Opt. Laser. Technol., 2017, 97, p 46–59.CrossRef M. Hussain, V. Mandal, V. Kumar, A.K. Das and S.K. Ghosh, Development of TiN Particulates Reinforced SS316 Based Metal Matrix Composite by Direct Metal Laser Sintering Technique and its Characterization, Opt. Laser. Technol., 2017, 97, p 46–59.CrossRef
27.
Zurück zum Zitat J. Wang, L. Li and W. Tao, Crack Initiation and Propagation Behavior of WC Particles Reinforced Fe-Based Metal Matrix Composite produced by Laser Melting Deposition, Opt. Laser. Technol., 2016, 82, p 170–182.CrossRef J. Wang, L. Li and W. Tao, Crack Initiation and Propagation Behavior of WC Particles Reinforced Fe-Based Metal Matrix Composite produced by Laser Melting Deposition, Opt. Laser. Technol., 2016, 82, p 170–182.CrossRef
28.
Zurück zum Zitat H. Yingbin, N. Fuda, W. Xinlin, W. Hui, Z. Bo, C. Weilong and L. Yuzhou, Laser Deposition-Additive Manufacturing of In situ TiB Reinforced Titanium Matrix Composites: TiB Growth and Part Performance, Int. J. Adv. Manuf. Technol., 2017, 93, p 3409–3418.CrossRef H. Yingbin, N. Fuda, W. Xinlin, W. Hui, Z. Bo, C. Weilong and L. Yuzhou, Laser Deposition-Additive Manufacturing of In situ TiB Reinforced Titanium Matrix Composites: TiB Growth and Part Performance, Int. J. Adv. Manuf. Technol., 2017, 93, p 3409–3418.CrossRef
29.
Zurück zum Zitat S. Liu, Y. Wang, T. Muthuramalingam and G. Anbuchezhiyan, Effect of B4C and MOS2 Reinforcement on Micro Structure and Wear Properties of Aluminum Hybrid Composite for Automotive Applications, Compos. B Eng., 2019, 176, p 107329.CrossRef S. Liu, Y. Wang, T. Muthuramalingam and G. Anbuchezhiyan, Effect of B4C and MOS2 Reinforcement on Micro Structure and Wear Properties of Aluminum Hybrid Composite for Automotive Applications, Compos. B Eng., 2019, 176, p 107329.CrossRef
30.
Zurück zum Zitat Y. Yankun, Z. Chaoqun, W. Dayong, N. Liping, W. Daniel and T. Yingtao, Additive Manufacturing of WC-Co Hardmetals: A Review, Int. J. Adv. Manuf. Technol., 2020, 108, p 1653–1673.CrossRef Y. Yankun, Z. Chaoqun, W. Dayong, N. Liping, W. Daniel and T. Yingtao, Additive Manufacturing of WC-Co Hardmetals: A Review, Int. J. Adv. Manuf. Technol., 2020, 108, p 1653–1673.CrossRef
31.
Zurück zum Zitat N.A. Ahmad, Z. Kamdi and A.L. Mohd Tobi, View of Wear and Corrosion Behavior of Tungsten Carbide-Based Coating on Carbon Steel, Int. J. Integr. Eng., 2018, 10, p 119–125 N.A. Ahmad, Z. Kamdi and A.L. Mohd Tobi, View of Wear and Corrosion Behavior of Tungsten Carbide-Based Coating on Carbon Steel, Int. J. Integr. Eng., 2018, 10, p 119–125
32.
Zurück zum Zitat X. Lou, M. Song, W.P. Emigha, M.A. Othona and P.L. Andresena, On the Stress Corrosion Crack Growth Behaviour in High Temperature water of 316L Stainless Steel Made by Laser Powder Bed Fusion Additive Manufacturing, Corros. Sci., 2017, 128, p 140–153.CrossRef X. Lou, M. Song, W.P. Emigha, M.A. Othona and P.L. Andresena, On the Stress Corrosion Crack Growth Behaviour in High Temperature water of 316L Stainless Steel Made by Laser Powder Bed Fusion Additive Manufacturing, Corros. Sci., 2017, 128, p 140–153.CrossRef
33.
Zurück zum Zitat X. Lou, P.L. Andresen and R.B. Rebak, Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior, J. Nucl. Mater., 2018, 499, p 182–190.CrossRef X. Lou, P.L. Andresen and R.B. Rebak, Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior, J. Nucl. Mater., 2018, 499, p 182–190.CrossRef
34.
Zurück zum Zitat G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Brameld and C.R. Hutchinsona, The Corrosion and Metastable Pitting Characteristics of 316L Stainless Steel Produced by Selective Laser Melting, J. Electrochem. Soc., 2017, 164, p 250–257.CrossRef G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Brameld and C.R. Hutchinsona, The Corrosion and Metastable Pitting Characteristics of 316L Stainless Steel Produced by Selective Laser Melting, J. Electrochem. Soc., 2017, 164, p 250–257.CrossRef
35.
Zurück zum Zitat X. Yan, C. Huang, C. Chen, R. Bolot, L. Dembinski and R. Huang, Additive manufacturing of WC reinforced maraging steel 300 composites by cold spraying and selective laser melting, Surf. Coat. Tech., 2019, 371, p 161–171.CrossRef X. Yan, C. Huang, C. Chen, R. Bolot, L. Dembinski and R. Huang, Additive manufacturing of WC reinforced maraging steel 300 composites by cold spraying and selective laser melting, Surf. Coat. Tech., 2019, 371, p 161–171.CrossRef
Metadaten
Titel
Effect of WC Composition on the Microstructure and Surface Properties of Laser Directed Energy Deposited SS 316-WC Composites
verfasst von
K. Benarji
Y. Ravi kumar
A. N. Jinoop
C. P. Paul
K. S. Bindra
Publikationsdatum
24.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05971-2

Weitere Artikel der Ausgabe 9/2021

Journal of Materials Engineering and Performance 9/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.