Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2021

23.07.2021

Characterization of the Microstructures and Dynamic Recrystallization Behavior of Ti-6Al-4V Titanium Alloy through Experiments and Simulations

verfasst von: Hongchao Ji, Zhanshuo Peng, Xiaomin Huang, Baoyu Wang, Wenchao Xiao, Shufu Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Ti-6Al-4V (TC4) is subjected to an isothermal compression test by the Gleeble-3800 thermal simulation testing machine, and the stress–strain curve is obtained, and the experimental data are corrected by friction. Through dynamic recrystallization (DRX) dynamic analysis and simulation, the microstructure evolution and hot compression behavior of TC4 titanium alloy under different deformation conditions are studied. The DRX behavior confirmed by microstructure observation is promoted at higher temperature and lower strain rate. In the compression process, when \(\dot{\varvec{\varepsilon} }=1{s}^{-1}\), its softening effect increases significantly with the increase in temperature. When \(\dot{\varvec{\varepsilon} }=0.001{s}^{-1}\) and \(\dot{\varvec {\varepsilon} }=0.01{s}^{-1}\), the softening effect is not obvious. At 1223K, the flow softening extent increases with the increase in strain rate where DRX plays a dominate role in the softening behavior. TC4 titanium alloy has obvious discontinuous yield behavior under high-temperature compression deformation conditions, and the yield value is not significantly correlated with the increase in deformation temperature. The DRX kinetics model was established to calculate the volume fraction and grain size of DRX under the investigated deformation parameters. In addition, the relationship between microstructure and deformation behavior and mechanical properties is also discussed. The excellent correlation shows that the organization and mechanical properties can be controlled by selecting suitable deformation parameters. Finally, the finite element model is combined with the kinetic equation to predict the microstructure of TC4 titanium alloy after hot compression. The result shows that the predicted value is highly consistent with the experimental value. The error of the recrystallization volume fraction does not exceed 10%. This shows that the model has excellent applicability in current research and has huge practical application potential in predicting the mechanical properties of TC4 titanium alloy after hot working.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.J. Mcqueen, S. Yue, N.D. Ryan et al., Hot Working Characteristics of Steels in Austenitic State, J. Mater. Process. Technol., 1995, 53(1–2), p 293–310. CrossRef H.J. Mcqueen, S. Yue, N.D. Ryan et al., Hot Working Characteristics of Steels in Austenitic State, J. Mater. Process. Technol., 1995, 53(1–2), p 293–310. CrossRef
2.
Zurück zum Zitat K. Wang, G. Liu, J. Zhao et al., Experimental and Modelling Study of an Approach to Enhance Gas Bulging Formability of TA15 Titanium Alloy Tube Based on Dynamic Recrystallization, J. Mater. Process. Technol., 2018, 259, p 387–396. CrossRef K. Wang, G. Liu, J. Zhao et al., Experimental and Modelling Study of an Approach to Enhance Gas Bulging Formability of TA15 Titanium Alloy Tube Based on Dynamic Recrystallization, J. Mater. Process. Technol., 2018, 259, p 387–396. CrossRef
3.
Zurück zum Zitat S. Venugopal, S.L. Mannan and P. Rodriguez, Strategy for the Design of Thermomechanical Processes for AISI Type 304L Stainless Steel using Dynamic Materials Model (DMM) Stability Criteria and Model for the Evolution of Microstructure, J. Mater. Sci., 2004, 39(16–17), p 5557–5560. CrossRef S. Venugopal, S.L. Mannan and P. Rodriguez, Strategy for the Design of Thermomechanical Processes for AISI Type 304L Stainless Steel using Dynamic Materials Model (DMM) Stability Criteria and Model for the Evolution of Microstructure, J. Mater. Sci., 2004, 39(16–17), p 5557–5560. CrossRef
4.
Zurück zum Zitat M. Irani, S. Lim and M. Joun, Experimental and Numerical Study on the Temperature Sensitivity of the Dynamic Recrystallization Activation Energy and Strain Rate Exponent in the JMAK Model, J. Market. Res., 2019, 8(2), p 1616–1627. M. Irani, S. Lim and M. Joun, Experimental and Numerical Study on the Temperature Sensitivity of the Dynamic Recrystallization Activation Energy and Strain Rate Exponent in the JMAK Model, J. Market. Res., 2019, 8(2), p 1616–1627.
5.
Zurück zum Zitat M. El Wahabi et al., Effect of Initial Grain Size on Dynamic Recrystallization in High Purity Austenitic Stainless Steels, Acta Materialia, 2005, 53(17), p 4605–4612. CrossRef M. El Wahabi et al., Effect of Initial Grain Size on Dynamic Recrystallization in High Purity Austenitic Stainless Steels, Acta Materialia, 2005, 53(17), p 4605–4612. CrossRef
6.
Zurück zum Zitat D. Samantaray, S. Mandal, M. Jayalakshmi et al., New Insights into the Relationship Between Dynamic Softening Phenomena and Efficiency of Hot Working Domains of a Nitrogen Enhanced 316L(N) Stainless Steel, Mater. Sci. Eng. A, 2014, 598, p 368–375. CrossRef D. Samantaray, S. Mandal, M. Jayalakshmi et al., New Insights into the Relationship Between Dynamic Softening Phenomena and Efficiency of Hot Working Domains of a Nitrogen Enhanced 316L(N) Stainless Steel, Mater. Sci. Eng. A, 2014, 598, p 368–375. CrossRef
7.
Zurück zum Zitat L. Li, Y. Wang, H. Li et al., Effect of the Zener-Hollomon Parameter on the Dynamic Recrystallization Kinetics of Mg–Zn–Zr–Yb Magnesium Alloy, Comput. Mater. Sci., 2019, 166, p 221–229. CrossRef L. Li, Y. Wang, H. Li et al., Effect of the Zener-Hollomon Parameter on the Dynamic Recrystallization Kinetics of Mg–Zn–Zr–Yb Magnesium Alloy, Comput. Mater. Sci., 2019, 166, p 221–229. CrossRef
8.
Zurück zum Zitat M.-S. Chen, W.-Q. Yuan, H.-B. Li et al., New Insights on the Relationship between Flow Stress Softening and Dynamic Recrystallization Behavior of Magnesium Alloy AZ31B, Mater. Charact., 2019, 147, p 173–183. CrossRef M.-S. Chen, W.-Q. Yuan, H.-B. Li et al., New Insights on the Relationship between Flow Stress Softening and Dynamic Recrystallization Behavior of Magnesium Alloy AZ31B, Mater. Charact., 2019, 147, p 173–183. CrossRef
9.
Zurück zum Zitat L. Chen, W. Sun, J. Lin et al., Modelling of Constitutive Relationship, Dynamic Recrystallization and Grain Size of 40Cr Steel during Hot Deformation Process, Results Phys., 2019, 12, p 784–792. CrossRef L. Chen, W. Sun, J. Lin et al., Modelling of Constitutive Relationship, Dynamic Recrystallization and Grain Size of 40Cr Steel during Hot Deformation Process, Results Phys., 2019, 12, p 784–792. CrossRef
10.
Zurück zum Zitat Y. Wu, Z. Liu, X. Qin et al., Effect of Initial State on Hot Deformation and Dynamic Recrystallization of Ni-Fe Based Alloy GH984G for Steam Boiler Applications, J. Alloy. Compd., 2019, 795, p 370–384. CrossRef Y. Wu, Z. Liu, X. Qin et al., Effect of Initial State on Hot Deformation and Dynamic Recrystallization of Ni-Fe Based Alloy GH984G for Steam Boiler Applications, J. Alloy. Compd., 2019, 795, p 370–384. CrossRef
11.
Zurück zum Zitat J. Yang, J. Luo, X. Li et al., Evolution Mechanisms of Recrystallized Grains and Twins During Isothermal Compression and Subsequent Solution Treatment of GH4586 Superalloy, J. Alloys Compd., 2020, 850, p 156732. CrossRef J. Yang, J. Luo, X. Li et al., Evolution Mechanisms of Recrystallized Grains and Twins During Isothermal Compression and Subsequent Solution Treatment of GH4586 Superalloy, J. Alloys Compd., 2020, 850, p 156732. CrossRef
12.
Zurück zum Zitat X. Pan, X. Wang, Z. Tian et al., Effect of Dynamic Recrystallization on Texture Orientation and Grain Refinement of Ti6Al4V Titanium Alloy Subjected to Laser Shock Peening, J. Alloys Compd., 2020, 850, p 156672. CrossRef X. Pan, X. Wang, Z. Tian et al., Effect of Dynamic Recrystallization on Texture Orientation and Grain Refinement of Ti6Al4V Titanium Alloy Subjected to Laser Shock Peening, J. Alloys Compd., 2020, 850, p 156672. CrossRef
13.
Zurück zum Zitat M.S. Chen, Y.C. Lin and X.S. Ma, The Kinetics of Dynamic Recrystallization of 42CrMo Steel, Mater. Sci. Eng. A, 2012, 556, p 260–266. CrossRef M.S. Chen, Y.C. Lin and X.S. Ma, The Kinetics of Dynamic Recrystallization of 42CrMo Steel, Mater. Sci. Eng. A, 2012, 556, p 260–266. CrossRef
14.
Zurück zum Zitat Y. Li, Y. Zhang, Z. Chen et al., Hot Deformation Behavior and Dynamic Recrystallization of GH690 Nickel-based Superalloy, J. Alloys Compd., 2020, 847, p 156507. CrossRef Y. Li, Y. Zhang, Z. Chen et al., Hot Deformation Behavior and Dynamic Recrystallization of GH690 Nickel-based Superalloy, J. Alloys Compd., 2020, 847, p 156507. CrossRef
15.
Zurück zum Zitat M. Wang, C. Sun, M.W. Fu et al., Experimental Investigations and Constitutive Modeling of the Dynamic Recrystallization Behavior of Inconel 740 Superalloy, Mater. Sci. Eng. A, 2020, 793, p 139939. CrossRef M. Wang, C. Sun, M.W. Fu et al., Experimental Investigations and Constitutive Modeling of the Dynamic Recrystallization Behavior of Inconel 740 Superalloy, Mater. Sci. Eng. A, 2020, 793, p 139939. CrossRef
16.
Zurück zum Zitat Y. Sun, G. Luo, J. Zhang et al., Phase Transition, Microstructure and Mechanical Properties of TC4 Titanium Alloy Prepared by Plasma Activated Sintering, J. Alloy. Compd., 2018, 741, p 918–926. CrossRef Y. Sun, G. Luo, J. Zhang et al., Phase Transition, Microstructure and Mechanical Properties of TC4 Titanium Alloy Prepared by Plasma Activated Sintering, J. Alloy. Compd., 2018, 741, p 918–926. CrossRef
17.
Zurück zum Zitat D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61(3), p 844–879. CrossRef D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61(3), p 844–879. CrossRef
18.
Zurück zum Zitat Q.J. Sun et al., Microstructure and Mechanical Properties of TA15 Alloy After Thermomechanical Processing, Mater. Sci. Eng. A, 2018, 724, p 493–501. CrossRef Q.J. Sun et al., Microstructure and Mechanical Properties of TA15 Alloy After Thermomechanical Processing, Mater. Sci. Eng. A, 2018, 724, p 493–501. CrossRef
19.
Zurück zum Zitat H. Ji, Z. Peng, W. Pei et al., Constitutive Equation and Hot Processing Map of TA15 Titanium Alloy, Mater. Res. Exp., 2020, 7(4), p 046508. CrossRef H. Ji, Z. Peng, W. Pei et al., Constitutive Equation and Hot Processing Map of TA15 Titanium Alloy, Mater. Res. Exp., 2020, 7(4), p 046508. CrossRef
20.
Zurück zum Zitat D. Wang, R. Zhang and S. Yuan, Flow Behavior and Microstructure Evolution of a TiBw/TA15 Composite with Network-Distributed Reinforcements During Interrupted Hot Compression, Mater. Sci. Eng. A, 2018, 725, p 428–436. CrossRef D. Wang, R. Zhang and S. Yuan, Flow Behavior and Microstructure Evolution of a TiBw/TA15 Composite with Network-Distributed Reinforcements During Interrupted Hot Compression, Mater. Sci. Eng. A, 2018, 725, p 428–436. CrossRef
21.
Zurück zum Zitat P. Gao, M. Fu, M. Zhan et al., Deformation Behavior and Microstructure Evolution of Titanium Alloys with Lamellar Microstructure in Hot Working Process: A Review, J. Mater. Sci. Technol., 2020, 39(04), p 56–73. CrossRef P. Gao, M. Fu, M. Zhan et al., Deformation Behavior and Microstructure Evolution of Titanium Alloys with Lamellar Microstructure in Hot Working Process: A Review, J. Mater. Sci. Technol., 2020, 39(04), p 56–73. CrossRef
22.
Zurück zum Zitat J. Li, F. Li and J. Cai, Constitutive Model Prediction and Flow Behavior Considering Strain Response in the Thermal Processing for the TA15 Titanium Alloy, Materials, 2018, 11(10), p 1985. CrossRef J. Li, F. Li and J. Cai, Constitutive Model Prediction and Flow Behavior Considering Strain Response in the Thermal Processing for the TA15 Titanium Alloy, Materials, 2018, 11(10), p 1985. CrossRef
23.
Zurück zum Zitat Q. Bai, J. Lin, T.A. Dean et al., Modelling of Dominant Softening Mechanisms for Ti-6Al-4V in Steady State Hot Forming Conditions, Mater. Sci. Eng., 2013, 559, p 352–358. CrossRef Q. Bai, J. Lin, T.A. Dean et al., Modelling of Dominant Softening Mechanisms for Ti-6Al-4V in Steady State Hot Forming Conditions, Mater. Sci. Eng., 2013, 559, p 352–358. CrossRef
24.
Zurück zum Zitat D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Materialia, 2013, 61(3), p 844–879. CrossRef D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Materialia, 2013, 61(3), p 844–879. CrossRef
25.
Zurück zum Zitat H. Wang, K. Zhao, X. Chu et al., Constitutive Modelling and Microscopic Analysis of TC4 Alloy Sheet at Elevated Temperature, Results Phys., 2019, 13, p 102332. CrossRef H. Wang, K. Zhao, X. Chu et al., Constitutive Modelling and Microscopic Analysis of TC4 Alloy Sheet at Elevated Temperature, Results Phys., 2019, 13, p 102332. CrossRef
26.
Zurück zum Zitat B. Roebuck, J.D. Lord, M. Brooks et al., Measuring Flow Stress in Hot Axisymmetric Compression Tests, Mater. High Temp., 2002, 23(2), p 59–83. CrossRef B. Roebuck, J.D. Lord, M. Brooks et al., Measuring Flow Stress in Hot Axisymmetric Compression Tests, Mater. High Temp., 2002, 23(2), p 59–83. CrossRef
27.
Zurück zum Zitat R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Tech., 2004, 152(2), p 136–143. CrossRef R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Tech., 2004, 152(2), p 136–143. CrossRef
28.
Zurück zum Zitat Y.C. Lin, G.-D. Pang, Y.-Q. Jiang et al., Hot Compressive Deformation Behavior and Microstructure Evolution of a Ti-55511 Alloy with Basket-Weave Microstructures, Vacuum, 2019, 169, p 108878. CrossRef Y.C. Lin, G.-D. Pang, Y.-Q. Jiang et al., Hot Compressive Deformation Behavior and Microstructure Evolution of a Ti-55511 Alloy with Basket-Weave Microstructures, Vacuum, 2019, 169, p 108878. CrossRef
29.
Zurück zum Zitat P. Geng, G. Qin, J. Zhou et al., Characterization of Microstructures and Hot-compressive Behavior of GH4169 Superalloy by Kinetics Analysis and Simulation, J. Mater. Process. Technol., 2021, 288, p 116879. CrossRef P. Geng, G. Qin, J. Zhou et al., Characterization of Microstructures and Hot-compressive Behavior of GH4169 Superalloy by Kinetics Analysis and Simulation, J. Mater. Process. Technol., 2021, 288, p 116879. CrossRef
30.
Zurück zum Zitat Y. Hu, Y. Huo and T. He, Mechanical Behavior and Microstructure Evolution of TC4 Alloy During High Temperature Plastic Deformation, Procedia Manuf., 2020, 50, p 642–646. CrossRef Y. Hu, Y. Huo and T. He, Mechanical Behavior and Microstructure Evolution of TC4 Alloy During High Temperature Plastic Deformation, Procedia Manuf., 2020, 50, p 642–646. CrossRef
31.
Zurück zum Zitat C.M. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Metal Sci. J., 1978, 13(3–4), p 187–194. C.M. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Metal Sci. J., 1978, 13(3–4), p 187–194.
32.
Zurück zum Zitat K. Edalati and Z. Horita, High-pressure Torsion of Pure Metals: Influence of Atomic Bond Parameters and Stacking Fault Energy on Grain Size and Correlation with Hardness, Acta Mater., 2011, 59(17), p 6831–6836. CrossRef K. Edalati and Z. Horita, High-pressure Torsion of Pure Metals: Influence of Atomic Bond Parameters and Stacking Fault Energy on Grain Size and Correlation with Hardness, Acta Mater., 2011, 59(17), p 6831–6836. CrossRef
33.
Zurück zum Zitat N.D. Ryan and H.J. Mcqueen, Dynamic Softening Mechanisms in 304 Austenitic Stainless Steel, Can. Metall. Q., 2013, 29(2), p 147–162. CrossRef N.D. Ryan and H.J. Mcqueen, Dynamic Softening Mechanisms in 304 Austenitic Stainless Steel, Can. Metall. Q., 2013, 29(2), p 147–162. CrossRef
34.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, A One-parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44(1), p 127–136. CrossRef E.I. Poliak and J.J. Jonas, A One-parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44(1), p 127–136. CrossRef
35.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2007, 43(5), p 684–691. CrossRef E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2007, 43(5), p 684–691. CrossRef
36.
Zurück zum Zitat Y.C. Lin, X.-M. Chen, D.-X. Wen et al., A Physically-based Constitutive Model for a Typical Nickel-Based Superalloy, Comput. Mater. Sci., 2014, 83, p 282–289. CrossRef Y.C. Lin, X.-M. Chen, D.-X. Wen et al., A Physically-based Constitutive Model for a Typical Nickel-Based Superalloy, Comput. Mater. Sci., 2014, 83, p 282–289. CrossRef
37.
Zurück zum Zitat Y.G. Liu, M.Q. Li and J. Luo, The Modelling of Dynamic Recrystallization in the Isothermal Compression of 300M Steel, Mater. Sci. Eng. A, 2013, 574, p 1–8. CrossRef Y.G. Liu, M.Q. Li and J. Luo, The Modelling of Dynamic Recrystallization in the Isothermal Compression of 300M Steel, Mater. Sci. Eng. A, 2013, 574, p 1–8. CrossRef
38.
Zurück zum Zitat Y. Xu, L. Hu and Y. Sun, Deformation Behaviour and Dynamic Recrystallization of AZ61 Magnesium Alloy, J. Alloy. Compd., 2013, 580, p 262–269. CrossRef Y. Xu, L. Hu and Y. Sun, Deformation Behaviour and Dynamic Recrystallization of AZ61 Magnesium Alloy, J. Alloy. Compd., 2013, 580, p 262–269. CrossRef
39.
Zurück zum Zitat H. Mirzadeh, J.M. Cabrera, A. Najafizadeh et al., EBSD Study of a Hot Deformed Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 538, p 236–245. CrossRef H. Mirzadeh, J.M. Cabrera, A. Najafizadeh et al., EBSD Study of a Hot Deformed Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 538, p 236–245. CrossRef
40.
Zurück zum Zitat G. Gottstein, M. Frommert, M. Goerdeler et al., Prediction of the Critical Conditions for Dynamic Recrystallization in the Austenitic Steel 800H, Mater. Sci. Eng. A, 2004, 387–389, p 604–608. CrossRef G. Gottstein, M. Frommert, M. Goerdeler et al., Prediction of the Critical Conditions for Dynamic Recrystallization in the Austenitic Steel 800H, Mater. Sci. Eng. A, 2004, 387–389, p 604–608. CrossRef
41.
Zurück zum Zitat Z. Peng, Y. Cen, C. Gang et al., Constitutive Model Based on Dynamic Recrystallization Behavior during Thermal Deformation of a Nickel-Based Superalloy, Metals, 2016, 6(7), p 161. CrossRef Z. Peng, Y. Cen, C. Gang et al., Constitutive Model Based on Dynamic Recrystallization Behavior during Thermal Deformation of a Nickel-Based Superalloy, Metals, 2016, 6(7), p 161. CrossRef
42.
Zurück zum Zitat A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46(11), p 1679–1684. CrossRef A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46(11), p 1679–1684. CrossRef
43.
Zurück zum Zitat B. Li, Y. Du, Z. Chu et al., Research on Dynamic Recrystallization Behavior of NiFeCr Based Alloy, Mater. Charact., 2020, 169, p 110653. CrossRef B. Li, Y. Du, Z. Chu et al., Research on Dynamic Recrystallization Behavior of NiFeCr Based Alloy, Mater. Charact., 2020, 169, p 110653. CrossRef
44.
Zurück zum Zitat H. Wu, M. Liu, Y. Wang et al., Experimental Study and Numerical Simulation of Dynamic Recrystallization for a FGH96 Superalloy During Isothermal Compression, J. Market. Res., 2020, 9(3), p 5090–5104. H. Wu, M. Liu, Y. Wang et al., Experimental Study and Numerical Simulation of Dynamic Recrystallization for a FGH96 Superalloy During Isothermal Compression, J. Market. Res., 2020, 9(3), p 5090–5104.
45.
Zurück zum Zitat H. Ji, Z. Cai, W. Pei et al., DRX Behavior and Microstructure Evolution of 33Cr23Ni8Mn3N: Experiment and Finite Element Simulation, J. Market. Res., 2020, 9(3), p 4340–4355. H. Ji, Z. Cai, W. Pei et al., DRX Behavior and Microstructure Evolution of 33Cr23Ni8Mn3N: Experiment and Finite Element Simulation, J. Market. Res., 2020, 9(3), p 4340–4355.
46.
Zurück zum Zitat H. Ji, H. Duan, Y. Li et al., Optimization the Working Parameters of As-Forged 42CrMo Steel by Constitutive Equation-Dynamic Recrystallization Equation and Processing Maps, J. Market. Res., 2020, 9(4), p 7210–7224. H. Ji, H. Duan, Y. Li et al., Optimization the Working Parameters of As-Forged 42CrMo Steel by Constitutive Equation-Dynamic Recrystallization Equation and Processing Maps, J. Market. Res., 2020, 9(4), p 7210–7224.
47.
Zurück zum Zitat G. Salishchev, S.V. Zerebtsov, S.Y. Mironov et al., Formation of Grain Boundary Misorientation Spectrum in Alpha-Beta Titanium Alloys with Lamellar Structure under Warm and Hot Working, Mater. Sci. Forum, 2004, 467–470, p 501–506. CrossRef G. Salishchev, S.V. Zerebtsov, S.Y. Mironov et al., Formation of Grain Boundary Misorientation Spectrum in Alpha-Beta Titanium Alloys with Lamellar Structure under Warm and Hot Working, Mater. Sci. Forum, 2004, 467–470, p 501–506. CrossRef
48.
Zurück zum Zitat S.L. Semiatin, V. Seetharaman and I. Weiss, Hot Workability of Titanium and Titanium Aluminide Alloys—An Overview, Mater. Sci. Eng. A, 1998, 243(1–2), p 1–24. CrossRef S.L. Semiatin, V. Seetharaman and I. Weiss, Hot Workability of Titanium and Titanium Aluminide Alloys—An Overview, Mater. Sci. Eng. A, 1998, 243(1–2), p 1–24. CrossRef
49.
Zurück zum Zitat Y.C. Lin, D.G. He, M.S. Chen et al., EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-based Superalloy during Hot Compressive Deformation, Mater. Des., 2016, 97, p 13–24. CrossRef Y.C. Lin, D.G. He, M.S. Chen et al., EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-based Superalloy during Hot Compressive Deformation, Mater. Des., 2016, 97, p 13–24. CrossRef
Metadaten
Titel
Characterization of the Microstructures and Dynamic Recrystallization Behavior of Ti-6Al-4V Titanium Alloy through Experiments and Simulations
verfasst von
Hongchao Ji
Zhanshuo Peng
Xiaomin Huang
Baoyu Wang
Wenchao Xiao
Shufu Wang
Publikationsdatum
23.07.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06044-0

Weitere Artikel der Ausgabe 11/2021

Journal of Materials Engineering and Performance 11/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.