Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2021

30.07.2021

Mechanisms of Metal-Slag Separation Behavior in Thermite Reduction for Preparation of TiAl Alloy

verfasst von: Yulai Song, Zhihe Dou, Ting-an Zhang, Guocheng Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermite reduction as one of the most promising methods for preparation of TiAl alloy, the metal-slag separation behavior in the whole process of chemical reaction, including both the alloy components and slags to be removed, is still ambiguous. In this paper, the two-step nucleation mechanism was applied to investigate the metal-slag separation behavior in the thermite reduction process for the preparation of TiAl alloy, which was confirmed by thermodynamic calculation based on density functional theory. Moreover, the component of products acquired from thermite reaction was characterized and analyzed by x-ray diffractometer, scanning electron microscope and transmission electron microscope, respectively. According to the results of the experiment and calculation, the formation and separation mechanism between alloy and slag in the process of preparing TiAl alloy via thermite reduction is visualized, which is universal in the whole metallurgical procedure involving redox and slag-making process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Kothari, R. Radhakrishnan and N.M. Wereley, Advances in Gamma Titanium Aluminides and their Manufacturing Techniques, Prog. Aeronaut. Sci., 2012, 55, p 1–6. K. Kothari, R. Radhakrishnan and N.M. Wereley, Advances in Gamma Titanium Aluminides and their Manufacturing Techniques, Prog. Aeronaut. Sci., 2012, 55, p 1–6.
2.
Zurück zum Zitat S.W. Zeng, A.M. Zhao, L. Luo, H.T. Jiang and L. Zhang, Development of β-solidifying α-TiAl Alloys Sheet, Mater. Lett., 2017, 198, p 31–33. S.W. Zeng, A.M. Zhao, L. Luo, H.T. Jiang and L. Zhang, Development of β-solidifying α-TiAl Alloys Sheet, Mater. Lett., 2017, 198, p 31–33.
3.
Zurück zum Zitat X.H. Wu, Review of Alloy and Process Development of TiAl Alloys, Intermetallics, 2006, 14, p 1114–11122. X.H. Wu, Review of Alloy and Process Development of TiAl Alloys, Intermetallics, 2006, 14, p 1114–11122.
4.
Zurück zum Zitat S.W. Kim, J.K. Hong, Y.S. Na, J.T. Yeom and S.E. Kim, Development of TiAl Alloys with Excellent Mechanical Properties and Oxidation Resistance, Mater. Des., 2014, 54, p 814–819. S.W. Kim, J.K. Hong, Y.S. Na, J.T. Yeom and S.E. Kim, Development of TiAl Alloys with Excellent Mechanical Properties and Oxidation Resistance, Mater. Des., 2014, 54, p 814–819.
5.
Zurück zum Zitat F.H. Froes and D. Eylon, Powder Metallurgy of Titanium Alloys, Int. Mater. Rev., 1990, 35(3), p 162–184. F.H. Froes and D. Eylon, Powder Metallurgy of Titanium Alloys, Int. Mater. Rev., 1990, 35(3), p 162–184.
6.
Zurück zum Zitat H. Deng, A.J. Chen, L.Q. Chen, Y.Q. Wei, Z.X. Xia and J. Tang, Bulk Nanostructured Ti-45Al-8Nb Alloy Fabricated by Cryomilling and Spark Plasma Sintering, J. Alloys Compd., 2019, 772, p 140–149. H. Deng, A.J. Chen, L.Q. Chen, Y.Q. Wei, Z.X. Xia and J. Tang, Bulk Nanostructured Ti-45Al-8Nb Alloy Fabricated by Cryomilling and Spark Plasma Sintering, J. Alloys Compd., 2019, 772, p 140–149.
7.
Zurück zum Zitat M.N. Mathabathe, A.S. Bolokang, G. Govender, C.W. Siyasiya and R.J. Mostert, Cold-Pressing and Vacuum Arc Melting of γ-TiAl based Alloys, Adv. Powder Technol., 2019, 30(12), p 2925–2939. M.N. Mathabathe, A.S. Bolokang, G. Govender, C.W. Siyasiya and R.J. Mostert, Cold-Pressing and Vacuum Arc Melting of γ-TiAl based Alloys, Adv. Powder Technol., 2019, 30(12), p 2925–2939.
8.
Zurück zum Zitat J. Lapin and A. Klimová, Vacuum Induction Melting and Casting of TiAl-based Matrix In-situ Composites Reinforced by Carbide Particles using Graphite Crucibles and Moulds, Vacuum, 2019, 169, p 108930. J. Lapin and A. Klimová, Vacuum Induction Melting and Casting of TiAl-based Matrix In-situ Composites Reinforced by Carbide Particles using Graphite Crucibles and Moulds, Vacuum, 2019, 169, p 108930.
9.
Zurück zum Zitat M. Bartosinski, S. Hassan-Pour, B. Friedrich, S. Ratiev and A. Ryabtsev, Deoxidation Limits of Titanium Alloys during Pressure Electro Slag Remelting, IOP Conf. Ser.: Mater. Sci. Eng., 2016, 143, p 012009. M. Bartosinski, S. Hassan-Pour, B. Friedrich, S. Ratiev and A. Ryabtsev, Deoxidation Limits of Titanium Alloys during Pressure Electro Slag Remelting, IOP Conf. Ser.: Mater. Sci. Eng., 2016, 143, p 012009.
10.
Zurück zum Zitat Y.Q. Su, J.J. Guo, J. Jia, G.Z. Liu and Y. Liu, Composition Control of a TiAl Melt During the Induction Skull Melting (ISM) Process, J. Alloys Compd., 2002, 334(1–2), p 261–266. Y.Q. Su, J.J. Guo, J. Jia, G.Z. Liu and Y. Liu, Composition Control of a TiAl Melt During the Induction Skull Melting (ISM) Process, J. Alloys Compd., 2002, 334(1–2), p 261–266.
11.
Zurück zum Zitat J.J. Guo, G.Z. Liu, Y.Q. Su, H.S. Ding, J. Jia and H.Z. Fu, Skull Variation During the Induction Skull Melting Processing of γ-TiAl Alloy, Mater. Sci. Forum, 2005, 475–479, p 809–812. J.J. Guo, G.Z. Liu, Y.Q. Su, H.S. Ding, J. Jia and H.Z. Fu, Skull Variation During the Induction Skull Melting Processing of γ-TiAl Alloy, Mater. Sci. Forum, 2005, 475–479, p 809–812.
12.
Zurück zum Zitat J.M. Ma, M.Y. Hao, Z.X. Li and C.X. Cao, Hard Alpha Defect in Titanium Alloys and its Control Using Plasma Arc Cold Hearth Melting Technique, Failure Analy. Prevent., 2007, 2(2), p 51–57. (in Chinese) J.M. Ma, M.Y. Hao, Z.X. Li and C.X. Cao, Hard Alpha Defect in Titanium Alloys and its Control Using Plasma Arc Cold Hearth Melting Technique, Failure Analy. Prevent., 2007, 2(2), p 51–57. (in Chinese)
13.
Zurück zum Zitat L.N. Belyanchikov, Stabilization of Vacuum Arc Remelting of Steels and Alloys, Russ. Metall., 2012, 79, p 1017–1021. L.N. Belyanchikov, Stabilization of Vacuum Arc Remelting of Steels and Alloys, Russ. Metall., 2012, 79, p 1017–1021.
14.
Zurück zum Zitat M.J. Blackburn and D.R. Malley, Plasma Arc Melting of Titanium Alloys, Mater. Des., 1993, 14(1), p 19–27. M.J. Blackburn and D.R. Malley, Plasma Arc Melting of Titanium Alloys, Mater. Des., 1993, 14(1), p 19–27.
15.
Zurück zum Zitat G. Baudana, S. Biamino, B. Klöden, A. Kirchner, T. Weißgärber, B. Kieback, M. Pavese, D. Ugues, P. Fino and C. Badini, Electron Beam Melting of Ti-48Al-2Nb-0.7Cr-0.3Si: Feasibility Investigation, Intermetallics, 2016, 73, p 43–49. G. Baudana, S. Biamino, B. Klöden, A. Kirchner, T. Weißgärber, B. Kieback, M. Pavese, D. Ugues, P. Fino and C. Badini, Electron Beam Melting of Ti-48Al-2Nb-0.7Cr-0.3Si: Feasibility Investigation, Intermetallics, 2016, 73, p 43–49.
16.
Zurück zum Zitat J.R. Yang, H. Wang, Y.L. Wu, X.Y. Wang and R. Hu, A Combined Electromagnetic Levitation Melting, Counter-Gravity Casting, and Mold Preheating Furnace for Producing TiAl Alloy, Adv. Eng. Mater., 2018, 20(2), p 1700526. J.R. Yang, H. Wang, Y.L. Wu, X.Y. Wang and R. Hu, A Combined Electromagnetic Levitation Melting, Counter-Gravity Casting, and Mold Preheating Furnace for Producing TiAl Alloy, Adv. Eng. Mater., 2018, 20(2), p 1700526.
17.
Zurück zum Zitat K. Zhao, N.X. Feng and Y.W. Wang, Fabrication of Ti-Al Intermetallics by a Two-stage Aluminothermic Reduction Process using Na2TiF6, Intermetallics, 2017, 85, p 156–162. K. Zhao, N.X. Feng and Y.W. Wang, Fabrication of Ti-Al Intermetallics by a Two-stage Aluminothermic Reduction Process using Na2TiF6, Intermetallics, 2017, 85, p 156–162.
18.
Zurück zum Zitat C. Cheng, Z.H. Dou, T.A. Zhang, H.J. Zhang, X. Yi and J.M. Su, Synthesis of As-cast Ti-Al-V Alloy from Titanium-rich Material by Thermite Reduction, JOM, 2017, 69, p 1818–1823. C. Cheng, Z.H. Dou, T.A. Zhang, H.J. Zhang, X. Yi and J.M. Su, Synthesis of As-cast Ti-Al-V Alloy from Titanium-rich Material by Thermite Reduction, JOM, 2017, 69, p 1818–1823.
19.
Zurück zum Zitat L.P. Niu, T.A. Zhang, H.B. Zhang and Z.H. Dou, Thermodynamics and Kinetics of Preparation of High Titanium Ferroalloy by Thermite Reaction, Chin. J. Nonferrous Met., 2010, 20, p 425–428. L.P. Niu, T.A. Zhang, H.B. Zhang and Z.H. Dou, Thermodynamics and Kinetics of Preparation of High Titanium Ferroalloy by Thermite Reaction, Chin. J. Nonferrous Met., 2010, 20, p 425–428.
20.
Zurück zum Zitat Y.L. Song, Z.H. Dou, T.A. Zhang and Y. Liu, A Novel Continuous and Controllable Method for Fabrication of As-cast TiAl Alloy, J. Alloys Compd., 2019, 789, p 266–275. Y.L. Song, Z.H. Dou, T.A. Zhang and Y. Liu, A Novel Continuous and Controllable Method for Fabrication of As-cast TiAl Alloy, J. Alloys Compd., 2019, 789, p 266–275.
21.
Zurück zum Zitat Y.L. Song, Z.H. Dou, T.A. Zhang, Y. Liu and L.P. Niu, Preparation of TiAl Master Alloy by Metallothermic Reduction, Rare Metal Mat. Eng., 2020, 49(3), p 1015–1019. (in Chinese) Y.L. Song, Z.H. Dou, T.A. Zhang, Y. Liu and L.P. Niu, Preparation of TiAl Master Alloy by Metallothermic Reduction, Rare Metal Mat. Eng., 2020, 49(3), p 1015–1019. (in Chinese)
23.
Zurück zum Zitat H.B. Yin, H. Shibata, T. Emi and M. Suzuki, In-situ Observation of Collision, Agglomeration and Cluster Formation of Alumina Inclusion Particles on Steel Melts, ISIJ Int., 1997, 37, p 936–945. H.B. Yin, H. Shibata, T. Emi and M. Suzuki, In-situ Observation of Collision, Agglomeration and Cluster Formation of Alumina Inclusion Particles on Steel Melts, ISIJ Int., 1997, 37, p 936–945.
24.
Zurück zum Zitat Y. Ren, L.F. Zhang, W. Yang and H.J. Duan, Formation and Thermodynamics of Mg-Al-Ti-O Complex Inclusions in Mg-Al-Ti-Deoxidized Steel, Metall. Mater. Trans. B, 2014, 45B, p 2057–2071. Y. Ren, L.F. Zhang, W. Yang and H.J. Duan, Formation and Thermodynamics of Mg-Al-Ti-O Complex Inclusions in Mg-Al-Ti-Deoxidized Steel, Metall. Mater. Trans. B, 2014, 45B, p 2057–2071.
25.
Zurück zum Zitat C. Wang, N.T. Nuhfer and S. Sridhar, Transient Behavior of Inclusion Chemistry, Shape, and Structure in Fe-Al-Ti-O Melts: Effect of Gradual Increase in Ti, Metall. Mater. Trans. B, 2010, 41B, p 1084–1094. C. Wang, N.T. Nuhfer and S. Sridhar, Transient Behavior of Inclusion Chemistry, Shape, and Structure in Fe-Al-Ti-O Melts: Effect of Gradual Increase in Ti, Metall. Mater. Trans. B, 2010, 41B, p 1084–1094.
26.
Zurück zum Zitat G.C. Wang, Y.Y. Xiao, C.M. Zhao, J. Li and D.L. Shang, Atomic Cluster Aggregates in Nucleation of Solid Alumina Inclusion in the Aluminum Deoxidation for Liquid Iron, Metall. Mater. Trans. B, 2018, 49(1), p 282–290. G.C. Wang, Y.Y. Xiao, C.M. Zhao, J. Li and D.L. Shang, Atomic Cluster Aggregates in Nucleation of Solid Alumina Inclusion in the Aluminum Deoxidation for Liquid Iron, Metall. Mater. Trans. B, 2018, 49(1), p 282–290.
27.
Zurück zum Zitat J.H. Lowe, and A. Mitchell, Clean Steel, Superclean Steel Conf., Proc., Institute of Materials, London, 1995, p. 223 J.H. Lowe, and A. Mitchell, Clean Steel, Superclean Steel Conf., Proc., Institute of Materials, London, 1995, p. 223
28.
Zurück zum Zitat F. Tsukihashi, E. Tawara and T. Hatta, Thermodynamics of Calcium and Oxygen in Molten Titanium and Titanium-Aluminum Alloy, Metall. Mater. Trans. B, 1996, 27B, p 967–972. F. Tsukihashi, E. Tawara and T. Hatta, Thermodynamics of Calcium and Oxygen in Molten Titanium and Titanium-Aluminum Alloy, Metall. Mater. Trans. B, 1996, 27B, p 967–972.
29.
Zurück zum Zitat Y. Kobayashi and F. Tsukihashi, Thermodynamics of Oxygen in Molten Ti-Al and Zr-Al Alloys, High Temp. Mater. Processes, 2000, 19(3–4), p 211–218. Y. Kobayashi and F. Tsukihashi, Thermodynamics of Oxygen in Molten Ti-Al and Zr-Al Alloys, High Temp. Mater. Processes, 2000, 19(3–4), p 211–218.
30.
Zurück zum Zitat A.S. Myerson and B.L. Trout, Nucleation from Solution, Science, 2013, 341, p 855–856. A.S. Myerson and B.L. Trout, Nucleation from Solution, Science, 2013, 341, p 855–856.
31.
Zurück zum Zitat D. Erdemir, A.Y. Lee and A.S. Myerson, Nucleation of Crystals from Solution: Classical and Two-step Models, Acc. Chem. Res., 2009, 42(5), p 621–629. D. Erdemir, A.Y. Lee and A.S. Myerson, Nucleation of Crystals from Solution: Classical and Two-step Models, Acc. Chem. Res., 2009, 42(5), p 621–629.
32.
Zurück zum Zitat K. Wasai, K. Mukai and A. Miyanaga, Observation of Inclusion in Aluminum Deoxidized Iron, ISIJ Int., 2002, 42, p 459–466. K. Wasai, K. Mukai and A. Miyanaga, Observation of Inclusion in Aluminum Deoxidized Iron, ISIJ Int., 2002, 42, p 459–466.
33.
Zurück zum Zitat A. Léon, G.E. Yalovega, A.V. Soldatov and M.M. Fichtner, Investigation of the Nature of a Ti-Al Cluster Formed upon Cycling under Hydrogen in Na Alanate Doped with a Ti-based Precursor, J. Phys. Chem. C., 2008, 112, p 12545–12549. A. Léon, G.E. Yalovega, A.V. Soldatov and M.M. Fichtner, Investigation of the Nature of a Ti-Al Cluster Formed upon Cycling under Hydrogen in Na Alanate Doped with a Ti-based Precursor, J. Phys. Chem. C., 2008, 112, p 12545–12549.
34.
Zurück zum Zitat M.J. Malliavin and C. Coudray, Ab Initio Calculations on (MgO)n, (CaO)n, and (NaCl)n Clusters (n = 1–6), J. Chem. Phys., 1997, 106(6), p 2323–2330. M.J. Malliavin and C. Coudray, Ab Initio Calculations on (MgO)n, (CaO)n, and (NaCl)n Clusters (n = 1–6), J. Chem. Phys., 1997, 106(6), p 2323–2330.
35.
Zurück zum Zitat G.C. Wang, Q. Wang, S.L. Li, X.G. Ai and C.G. Fan, Evidence of Multi-step Nucleation Leading to Various Crystallization Pathways From an Fe-O-Al Melt, Sci. Rep., 2014, 4, p 5082. G.C. Wang, Q. Wang, S.L. Li, X.G. Ai and C.G. Fan, Evidence of Multi-step Nucleation Leading to Various Crystallization Pathways From an Fe-O-Al Melt, Sci. Rep., 2014, 4, p 5082.
36.
Zurück zum Zitat N.F. Zong, Y. Liu and P. He, Learning about the Nucleation Pathway of MgO∙Al2O3 Spinel From an Fe-O-Al-Mg Melt Using a Two-step Nucleation Mechanism, RSC Adv., 2015, 5, p 48382–48390. N.F. Zong, Y. Liu and P. He, Learning about the Nucleation Pathway of MgO∙Al2O3 Spinel From an Fe-O-Al-Mg Melt Using a Two-step Nucleation Mechanism, RSC Adv., 2015, 5, p 48382–48390.
37.
Zurück zum Zitat T. Hirano, in MOPAC Manual, ed. J. J. P. Stewart, 7th edn, 1993 T. Hirano, in MOPAC Manual, ed. J. J. P. Stewart, 7th edn, 1993
38.
Zurück zum Zitat C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density, Phys. Rev. B, 1988, 37(2), p 785–789. C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density, Phys. Rev. B, 1988, 37(2), p 785–789.
39.
Zurück zum Zitat E.B. Wilson, J.C. Decius and P.C. Cross, Molecular Vibrations, Dover, New York, 1980. E.B. Wilson, J.C. Decius and P.C. Cross, Molecular Vibrations, Dover, New York, 1980.
40.
Zurück zum Zitat F. Bawa and I. Panas, Limiting Properties of (MgO)n and (CaO)n Clusters, Phys. Chem. Chem. Phys., 2001, 3, p 3042–3047. F. Bawa and I. Panas, Limiting Properties of (MgO)n and (CaO)n Clusters, Phys. Chem. Chem. Phys., 2001, 3, p 3042–3047.
41.
Zurück zum Zitat G.C. Wang, Y.Y. Xiao, Y.L. Song, H.C. Zhou, Q.R. Tian and F.K. Li, A Density Functional Study on the Aggregation of Alumina Clusters, Res. Chem. Intermed., 2017, 43(3), p 1447–1463. G.C. Wang, Y.Y. Xiao, Y.L. Song, H.C. Zhou, Q.R. Tian and F.K. Li, A Density Functional Study on the Aggregation of Alumina Clusters, Res. Chem. Intermed., 2017, 43(3), p 1447–1463.
42.
Zurück zum Zitat B. Hallstedt, Assessment of the CaO-Al2O3 System, J. Am. Ceram. Soc., 1990, 73, p 15–23. B. Hallstedt, Assessment of the CaO-Al2O3 System, J. Am. Ceram. Soc., 1990, 73, p 15–23.
43.
Zurück zum Zitat R.W. Nurse, J.H. Welch and A.J. Majumdar, The 12CaO∙7Al2O3 Phase in the CaO-Al2O3 System, Trans. Br. Ceram. Soc., 1965, 64, p 323–332. R.W. Nurse, J.H. Welch and A.J. Majumdar, The 12CaO∙7Al2O3 Phase in the CaO-Al2O3 System, Trans. Br. Ceram. Soc., 1965, 64, p 323–332.
44.
Zurück zum Zitat D.A. Jerebtsov and G.G. Mikhailov, Phase Diagram of CaO-Al2O3 System, Ceram. Int., 2001, 27, p 25–28. D.A. Jerebtsov and G.G. Mikhailov, Phase Diagram of CaO-Al2O3 System, Ceram. Int., 2001, 27, p 25–28.
45.
Zurück zum Zitat Y.Y. Xiao, G.C. Wang, H. Lei and S. Sridhar, Formation Pathways for MgO∙Al2O3 Inclusions in Iron Melt, J. Alloys Compd., 2020, 813, p 152243. Y.Y. Xiao, G.C. Wang, H. Lei and S. Sridhar, Formation Pathways for MgO∙Al2O3 Inclusions in Iron Melt, J. Alloys Compd., 2020, 813, p 152243.
46.
Zurück zum Zitat T. Tetsui, R. Nagasaki, D.C. Nagasaki, and J.P. Nagasaki, Titanium Aluminum Intermetallic Compound based Alloy and Method of Fabricating a Product from the Alloy, EP1308529B1, US patent, 2005 T. Tetsui, R. Nagasaki, D.C. Nagasaki, and J.P. Nagasaki, Titanium Aluminum Intermetallic Compound based Alloy and Method of Fabricating a Product from the Alloy, EP1308529B1, US patent, 2005
47.
Zurück zum Zitat C.W. Wang, W.W. Ping, Q. Bai, H.C. Cui, R. Hensleigh, R.L. Wang, A.H. Brozena, Z.P. Xu, J.Q. Sai, Y. Pei, C.L. Zheng, G. Pastel, J.L. Gao, X.Z. Wang, H. Wang, J.C. Zhao, B. Yang, X.Y. Zheng, J. Luo, Y.F. Mo, B. Dunn and L.B. Hu, A General Method to Synthesize and Sinter Bulk Ceramics in Seconds, Science, 2020, 368, p 521–526. C.W. Wang, W.W. Ping, Q. Bai, H.C. Cui, R. Hensleigh, R.L. Wang, A.H. Brozena, Z.P. Xu, J.Q. Sai, Y. Pei, C.L. Zheng, G. Pastel, J.L. Gao, X.Z. Wang, H. Wang, J.C. Zhao, B. Yang, X.Y. Zheng, J. Luo, Y.F. Mo, B. Dunn and L.B. Hu, A General Method to Synthesize and Sinter Bulk Ceramics in Seconds, Science, 2020, 368, p 521–526.
Metadaten
Titel
Mechanisms of Metal-Slag Separation Behavior in Thermite Reduction for Preparation of TiAl Alloy
verfasst von
Yulai Song
Zhihe Dou
Ting-an Zhang
Guocheng Wang
Publikationsdatum
30.07.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06074-8

Weitere Artikel der Ausgabe 12/2021

Journal of Materials Engineering and Performance 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.