Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2021

13.08.2021

Design and Development of NiTi Shape Memory Alloy Belt for Waste Heat Energy Recovery System

verfasst von: Jayachandran Subbian, Sumeet Raikwar, Nanda Krishna Sindam, Mandivarapu Thikshan Madhav, Palani Iyamperumal Anand

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The abundant waste thermal energy from various sources can be efficiently harvested using material-based technology. Shape memory alloy (SMA) is an efficacious material-based technology for recovering waste heat. In this work, the NiTi SMA bimorph belt has been fabricated in flash evaporation equipment using a customized substrate holder setup. The SMA bimorph belt has been developed with three different prestrain percentage of 1, 3, and 5%. The kapton polyimide substrate is prestrained using a tensile testing setup before the deposition. The actuation characteristics and material characterization of this bimorph belt with varying prestrain percentages have been analyzed. The prestrained bimorph belt with superior material properties and actuation characteristics is used for harnessing the waste heat energy. The actuation performance explored through plate heating reveals 5% prestrain in the bimorph has the maximum shape recovery ratio in both butterfly and cantilever configuration. The contact-based electrical actuation (Joule heating) showed a maximum deflection of 1 mm at 5% prestrain. The adhesion and composition of the bimorph are unaltered with varying prestrain percentage. The morphology shows smooth deposition without any pores and the mechanical strength reduces with an increase in prestrain percentage. The SMA bimorph belt with 5% prestrain generated 60 rpm with aluminum hub and 45 rpm with the polylactic acid hub in the developed prototype using simulated exhaust heat condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.A. Kishore and S. Priya, Low-Grade Waste Heat Recovery Using the Reverse Magnetocaloric Effect, Sustain. Energy Fuels, 2017, 1(9), p 1899–1908.CrossRef R.A. Kishore and S. Priya, Low-Grade Waste Heat Recovery Using the Reverse Magnetocaloric Effect, Sustain. Energy Fuels, 2017, 1(9), p 1899–1908.CrossRef
3.
Zurück zum Zitat A. Oudich and F. Thiebaud, A Two-Way Shape Memory Alloy-Piezoelectric Bimorph for Thermal Energy Harvesting, Mech. Mater., 2016, 102, p 1–6.CrossRef A. Oudich and F. Thiebaud, A Two-Way Shape Memory Alloy-Piezoelectric Bimorph for Thermal Energy Harvesting, Mech. Mater., 2016, 102, p 1–6.CrossRef
4.
Zurück zum Zitat E. Barbier, Geothermal Energy Technology and Current Status: An Overview, Renew. Sustain. Energy Rev., 2002, 6(1–2), p 3–65.CrossRef E. Barbier, Geothermal Energy Technology and Current Status: An Overview, Renew. Sustain. Energy Rev., 2002, 6(1–2), p 3–65.CrossRef
5.
Zurück zum Zitat H.D. Madhawa Hettiarachchi, M. Golubovic, W.M. Worek and Y. Ikegami, Optimum Design Criteria for an Organic Rankine Cycle Using Low-Temperature Geothermal Heat Sources, Energy, 2007, 32(9), p 1698–1706.CrossRef H.D. Madhawa Hettiarachchi, M. Golubovic, W.M. Worek and Y. Ikegami, Optimum Design Criteria for an Organic Rankine Cycle Using Low-Temperature Geothermal Heat Sources, Energy, 2007, 32(9), p 1698–1706.CrossRef
6.
Zurück zum Zitat F. Hao, P. Qiu, Y. Tang, S. Bai, T. Xing, H.S. Chu, Q. Zhang, P. Lu, T. Zhang, D. Ren, J. Chen, X. Shi and L. Chen, High Efficiency Bi2Te3-Based Materials and Devices for Thermoelectric Power Generation between 100 and 300 °C, Energy Environ. Sci., 2016, 9(10), p 3120–3127.CrossRef F. Hao, P. Qiu, Y. Tang, S. Bai, T. Xing, H.S. Chu, Q. Zhang, P. Lu, T. Zhang, D. Ren, J. Chen, X. Shi and L. Chen, High Efficiency Bi2Te3-Based Materials and Devices for Thermoelectric Power Generation between 100 and 300 °C, Energy Environ. Sci., 2016, 9(10), p 3120–3127.CrossRef
8.
Zurück zum Zitat J.F. Elliott, Thermomagnetic Generator, J. Appl. Phys., 1959, 30(11), p 1774–1777.CrossRef J.F. Elliott, Thermomagnetic Generator, J. Appl. Phys., 1959, 30(11), p 1774–1777.CrossRef
9.
Zurück zum Zitat S.K.T. Ravindran, T. Huesgen, M. Kroener and P. Woias, A Self-Sustaining Micro Thermomechanic-Pyroelectric Generator, Appl. Phys. Lett., 2011, 99(10), p 2011–2014.CrossRef S.K.T. Ravindran, T. Huesgen, M. Kroener and P. Woias, A Self-Sustaining Micro Thermomechanic-Pyroelectric Generator, Appl. Phys. Lett., 2011, 99(10), p 2011–2014.CrossRef
10.
Zurück zum Zitat G. Sebald, D. Guyomar and A. Agbossou, On Thermoelectric and Pyroelectric Energy Harvesting, Smart Mater. Struct., 2009, 18(12), p 125006.CrossRef G. Sebald, D. Guyomar and A. Agbossou, On Thermoelectric and Pyroelectric Energy Harvesting, Smart Mater. Struct., 2009, 18(12), p 125006.CrossRef
11.
Zurück zum Zitat D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications, D.C. Lagoudas Ed, Springer, New York, 2008. D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications, D.C. Lagoudas Ed, Springer, New York, 2008.
14.
Zurück zum Zitat R. Banks, Nitinol Heat Engines, 1975, p 537–545. R. Banks, Nitinol Heat Engines, 1975, p 537–545.
15.
Zurück zum Zitat Y. Sato, N. Yoshida, Y. Tanabe, H. Fujita and N. Ooiwa, Characteristics of a New Power Generation System with Application of a Shape Memory Alloy Engine, Electr. Eng. Japan (English Transl. Denki Gakkai Ronbunshi), 2008, 165(3), p 8–15. Y. Sato, N. Yoshida, Y. Tanabe, H. Fujita and N. Ooiwa, Characteristics of a New Power Generation System with Application of a Shape Memory Alloy Engine, Electr. Eng. Japan (English Transl. Denki Gakkai Ronbunshi), 2008, 165(3), p 8–15.
16.
Zurück zum Zitat D. Avirovik, A. Kumar, R.J. Bodnar and S. Priya, Remote Light Energy Harvesting and Actuation Using Shape Memory Alloy—Piezoelectric Hybrid Transducer, Smart Mater. Struct., 2013, 22(5), p 052001.CrossRef D. Avirovik, A. Kumar, R.J. Bodnar and S. Priya, Remote Light Energy Harvesting and Actuation Using Shape Memory Alloy—Piezoelectric Hybrid Transducer, Smart Mater. Struct., 2013, 22(5), p 052001.CrossRef
17.
Zurück zum Zitat O.C. Namli and M. Taya, Design of Piezo-SMA Composite for Thermal Energy Harvester under Fluctuating Temperature, J. Appl. Mech. Trans. ASME, 2011, 78(3), p 1–8.CrossRef O.C. Namli and M. Taya, Design of Piezo-SMA Composite for Thermal Energy Harvester under Fluctuating Temperature, J. Appl. Mech. Trans. ASME, 2011, 78(3), p 1–8.CrossRef
19.
Zurück zum Zitat M. Rhimi and N. Lajnef, Passive Temperature Compensation in Piezoelectric Vibrators Using Shape Memory Alloy-Induced Axial Loading, J. Intell. Mater. Syst. Struct., 2012, 23(15), p 1759–1770.CrossRef M. Rhimi and N. Lajnef, Passive Temperature Compensation in Piezoelectric Vibrators Using Shape Memory Alloy-Induced Axial Loading, J. Intell. Mater. Syst. Struct., 2012, 23(15), p 1759–1770.CrossRef
20.
Zurück zum Zitat E. Wongweerayoot, W. Srituravanich and A. Pimpin, Fabrication and Characterization of Nitinol-Copper Shape Memory Alloy Bimorph Actuators, J. Mater. Eng. Perform., 2014, 24(2), p 635–643.CrossRef E. Wongweerayoot, W. Srituravanich and A. Pimpin, Fabrication and Characterization of Nitinol-Copper Shape Memory Alloy Bimorph Actuators, J. Mater. Eng. Perform., 2014, 24(2), p 635–643.CrossRef
21.
Zurück zum Zitat F. Kahleyss, R.L. De Miranda, T. Surmann, C. Zamponi, C. MacHai, D. Biermann and E. Quandt, Processing and Damping Properties of Sputtered NiTi Thin Films for Tools in Machining Processes, J. Mater. Eng. Perform., 2011, 20(4–5), p 500–505.CrossRef F. Kahleyss, R.L. De Miranda, T. Surmann, C. Zamponi, C. MacHai, D. Biermann and E. Quandt, Processing and Damping Properties of Sputtered NiTi Thin Films for Tools in Machining Processes, J. Mater. Eng. Perform., 2011, 20(4–5), p 500–505.CrossRef
22.
Zurück zum Zitat Y.H. Li, M.K. Li, F.L. Meng and W.T. Zheng, Investigation on Mechanical Properties of Deformation Tini Thin Films, J. Mater. Eng. Perform., 2012, 21(12), p 2691–2694.CrossRef Y.H. Li, M.K. Li, F.L. Meng and W.T. Zheng, Investigation on Mechanical Properties of Deformation Tini Thin Films, J. Mater. Eng. Perform., 2012, 21(12), p 2691–2694.CrossRef
23.
Zurück zum Zitat A. Ishida and M. Sato, Ti-Ni-Cu Shape-Memory Alloy Thin Film Formed on Polyimide Substrate, Thin Solid Films, 2008, 516(21), p 7836–7839.CrossRef A. Ishida and M. Sato, Ti-Ni-Cu Shape-Memory Alloy Thin Film Formed on Polyimide Substrate, Thin Solid Films, 2008, 516(21), p 7836–7839.CrossRef
24.
Zurück zum Zitat V.G. Kotnur, F.D. Tichelaar, W.T. Fu, J.T.M. De Hosson and G.C.A.M. Janssen, Shape Memory NiTi Thin Films Deposited at Low Temperature, Surf. Coatings Technol., 2014, 258, p 1145–1151.CrossRef V.G. Kotnur, F.D. Tichelaar, W.T. Fu, J.T.M. De Hosson and G.C.A.M. Janssen, Shape Memory NiTi Thin Films Deposited at Low Temperature, Surf. Coatings Technol., 2014, 258, p 1145–1151.CrossRef
25.
Zurück zum Zitat K. Akash, A.K. Shukla, S.S.S. Mani Prabu, D.C. Narayane, S. Kanmanisubbu and I.A.A. Palani, Parametric Investigations to Enhance the Thermomechanical Properties of CuAlNi Shape Memory Alloy Bi-Morph, J. Alloys Compd., 2017, 720, p 264–271.CrossRef K. Akash, A.K. Shukla, S.S.S. Mani Prabu, D.C. Narayane, S. Kanmanisubbu and I.A.A. Palani, Parametric Investigations to Enhance the Thermomechanical Properties of CuAlNi Shape Memory Alloy Bi-Morph, J. Alloys Compd., 2017, 720, p 264–271.CrossRef
27.
Zurück zum Zitat Y. Li, L. Cui, P. Shi and D. Yang, Phase Transformation Behaviors of Prestrained TiNi Shape Memory Alloy Fibers under the Constraint of a Hard Substrate, Mater. Lett., 2001, 49(3–4), p 224–227.CrossRef Y. Li, L. Cui, P. Shi and D. Yang, Phase Transformation Behaviors of Prestrained TiNi Shape Memory Alloy Fibers under the Constraint of a Hard Substrate, Mater. Lett., 2001, 49(3–4), p 224–227.CrossRef
28.
Zurück zum Zitat C. Kin Poon, K. Tak Lau and L. Min Zhou, Design of Pull-Out Stresses for Prestrained SMA Wire/Polymer Hybrid Composites, Compos. Part B Eng., 2005, 36(1), p 25–31.CrossRef C. Kin Poon, K. Tak Lau and L. Min Zhou, Design of Pull-Out Stresses for Prestrained SMA Wire/Polymer Hybrid Composites, Compos. Part B Eng., 2005, 36(1), p 25–31.CrossRef
29.
Zurück zum Zitat S. Eucken and T.W. Duerig, The Effects of Pseudoelastic Prestraining on the Tensile Behaviour and Two-Way Shape Memory Effect in Aged NiTi, Acta Metall., 1989, 37(8), p 2245–2252.CrossRef S. Eucken and T.W. Duerig, The Effects of Pseudoelastic Prestraining on the Tensile Behaviour and Two-Way Shape Memory Effect in Aged NiTi, Acta Metall., 1989, 37(8), p 2245–2252.CrossRef
30.
Zurück zum Zitat K. Wada and Y. Liu, Shape Recovery of NiTi Shape Memory Alloy under Various Pre-Strain and Constraint Conditions, Smart Mater. Struct., 2005, 14(5), p 273.CrossRef K. Wada and Y. Liu, Shape Recovery of NiTi Shape Memory Alloy under Various Pre-Strain and Constraint Conditions, Smart Mater. Struct., 2005, 14(5), p 273.CrossRef
32.
Zurück zum Zitat E. Makino, M. Uenoyama and T. Shibata, Flash Evaporation of TiNi Shape Memory Thin Film for Microactuators, Sens. Actuat. A Phys., 1998, 71(3), p 187–192.CrossRef E. Makino, M. Uenoyama and T. Shibata, Flash Evaporation of TiNi Shape Memory Thin Film for Microactuators, Sens. Actuat. A Phys., 1998, 71(3), p 187–192.CrossRef
34.
Zurück zum Zitat A. Ishida, M. Sato, T. Kimura and S. Miyazaki, Stress-Strain Curves of Sputter-Deposited Ti-Ni Thin Films, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop., 2000, 80(4), p 967–980. A. Ishida, M. Sato, T. Kimura and S. Miyazaki, Stress-Strain Curves of Sputter-Deposited Ti-Ni Thin Films, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop., 2000, 80(4), p 967–980.
35.
Zurück zum Zitat M. Drdácký, J. Lesák, S. Rescic, Z. Slížková, P. Tiano and J. Valach, Standardization of Peeling Tests for Assessing the Cohesion and Consolidation Characteristics of Historic Stone Surfaces, Mater. Struct. Constr., 2012, 45(4), p 505–520.CrossRef M. Drdácký, J. Lesák, S. Rescic, Z. Slížková, P. Tiano and J. Valach, Standardization of Peeling Tests for Assessing the Cohesion and Consolidation Characteristics of Historic Stone Surfaces, Mater. Struct. Constr., 2012, 45(4), p 505–520.CrossRef
Metadaten
Titel
Design and Development of NiTi Shape Memory Alloy Belt for Waste Heat Energy Recovery System
verfasst von
Jayachandran Subbian
Sumeet Raikwar
Nanda Krishna Sindam
Mandivarapu Thikshan Madhav
Palani Iyamperumal Anand
Publikationsdatum
13.08.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06091-7

Weitere Artikel der Ausgabe 12/2021

Journal of Materials Engineering and Performance 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.