Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2021

16.08.2021

Surface Shot Peening Post-processing of Inconel 718 Alloy Parts Printed by Laser Powder Bed Fusion Additive Manufacturing

verfasst von: D. A. Lesyk, V. V. Dzhemelinskyi, S. Martinez, B. N. Mordyuk, A. Lamikiz

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The shot peening (SP) post-processing was applied under different regimes to improve the surface characteristics of the nickel-based Inconel 718 alloy parts printed by a laser powder bed fusion (LPBF) additive manufacturing technique. The effects of SP treatment on surface topography, roughness, waviness, chemical composition, macrohardness, and defects on the surface of the LPBF-printed specimens were estimated in this work. The surface microstructure, phase state, subsurface porosity, microhardness distribution, and stress state in the near-surface layer of the LPBF-built and SP-processed specimens are also addressed to optimize the SP parameters for surface finishing and hardening of the LPBF-built superalloy parts. The experimentation on an industrial SP system and the surface roughness, hardness, and porosity analysis allowed the identification of appropriate peening pressure for surface treatment of the studied LPBF-built alloy. Particular attention is paid to the study of microstructural aspects induced by the severe surface plastic deformation. Results indicated that applied SP treatment leads to a decrease in the Ra roughness parameter providing a new wavy surface microrelief on the surface. The spherical/ellipsoidal balls and partially melted powder particles were successfully removed from the treated surface by the SP treatment, which also reduced a subsurface porosity. As compared to the LPBF-built sample (~370 HV0.025), the SP post-processing leads to work hardening, providing up to 75% increase in the surface microhardness due to the strain-induced grain refinement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Trosch, J. Strobner, R. Volkl and U. Glatzel, Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Compared to Forging and Casting, Mater. Lett., 2016, 164, p 428–431. CrossRef T. Trosch, J. Strobner, R. Volkl and U. Glatzel, Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Compared to Forging and Casting, Mater. Lett., 2016, 164, p 428–431. CrossRef
2.
Zurück zum Zitat R. Seede, A. Mostafa, V. Brailovski, M. Jahazi and M. Medraj, Microstructural and Microhardness Evolution from Homogenization and Hot isostatic Pressing on Selective Laser Melted Inconel 718: Structure, Texture, and Phases, Manuf. Mater. Process, 2018, 2, p 30–51. R. Seede, A. Mostafa, V. Brailovski, M. Jahazi and M. Medraj, Microstructural and Microhardness Evolution from Homogenization and Hot isostatic Pressing on Selective Laser Melted Inconel 718: Structure, Texture, and Phases, Manuf. Mater. Process, 2018, 2, p 30–51.
3.
Zurück zum Zitat J.D. Kim and I.S. Chao, Mechanical and Tribological Characteristics of Sintered Fe-Ni-Cr Alloy Subjected to High-frequency Ultrasonic Peening, Int. J. Surf. Sci. Eng., 2014, 8, p 239–254. CrossRef J.D. Kim and I.S. Chao, Mechanical and Tribological Characteristics of Sintered Fe-Ni-Cr Alloy Subjected to High-frequency Ultrasonic Peening, Int. J. Surf. Sci. Eng., 2014, 8, p 239–254. CrossRef
4.
Zurück zum Zitat D.A. Lesyk, S. Martinez, V.V. Dzhemelinskyi, and A. Lamikiz, Additive Manufacturing of the Superalloy Turbine Blades by Selective Laser Melting: Surface Quality, Microstructure and Porosity, In: Karabegović I. (eds) New Technologies, Development and Application III. NT 2020. Lecture Notes in Networks and Systems, 2020, 128, p 267–275. D.A. Lesyk, S. Martinez, V.V. Dzhemelinskyi, and A. Lamikiz, Additive Manufacturing of the Superalloy Turbine Blades by Selective Laser Melting: Surface Quality, Microstructure and Porosity, In: Karabegović I. (eds) New Technologies, Development and Application III. NT 2020. Lecture Notes in Networks and Systems, 2020, 128, p 267–275.
5.
Zurück zum Zitat Y.L. Kuo, T. Nagahari and K. Kakehi, The Effect of Post-processes on the Microstructure and Creep Properties of Alloy718 Built up by Selective Laser Melting, Mater., 2018, 11, p 996–1009. CrossRef Y.L. Kuo, T. Nagahari and K. Kakehi, The Effect of Post-processes on the Microstructure and Creep Properties of Alloy718 Built up by Selective Laser Melting, Mater., 2018, 11, p 996–1009. CrossRef
6.
Zurück zum Zitat A.H. Maamoun, M.A. Elbestawi and S.C. Veldhuis, Influence of Shot Peening on AlSi10Mg Parts Fabricated by Additive Manufacturing, Manuf. Mater. Process, 2018, 2, p 40–56. A.H. Maamoun, M.A. Elbestawi and S.C. Veldhuis, Influence of Shot Peening on AlSi10Mg Parts Fabricated by Additive Manufacturing, Manuf. Mater. Process, 2018, 2, p 40–56.
7.
Zurück zum Zitat N.E. Uzan, S. Ramati, R. Shneck, N. Frage and O. Yeheskel, On the Effect of Shot-peening on Fatigue Resistance of AlSi10Mg Specimens Fabricated by Additive Manufacturing Using Selective Laser Melting (AM-SLM), Addit. Manuf., 2018, 21, p 458–464. N.E. Uzan, S. Ramati, R. Shneck, N. Frage and O. Yeheskel, On the Effect of Shot-peening on Fatigue Resistance of AlSi10Mg Specimens Fabricated by Additive Manufacturing Using Selective Laser Melting (AM-SLM), Addit. Manuf., 2018, 21, p 458–464.
8.
Zurück zum Zitat D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, and A. Lamikiz, Surface finishing of complexly shaped parts fabricated by selective laser melting, Grabchenko’s International Conference on Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, 2020, p 186–195. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, and A. Lamikiz, Surface finishing of complexly shaped parts fabricated by selective laser melting, Grabchenko’s International Conference on Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, 2020, p 186–195.
9.
Zurück zum Zitat J. Gale and A. Achuhan, Application of Ultrasonic Peening During DMLS Production of 316L Stainless Steel and Its Effect on Material Behavior, Rapid Prototyp., 2017, 23, p 1185–1194. CrossRef J. Gale and A. Achuhan, Application of Ultrasonic Peening During DMLS Production of 316L Stainless Steel and Its Effect on Material Behavior, Rapid Prototyp., 2017, 23, p 1185–1194. CrossRef
10.
Zurück zum Zitat X. Xing, X. Duan, T. Jiang, J. Wang and F. Jiang, Ultrasonic Peening Treatment Used to Improve Stress corrosion Resistance of AlSi10Mg Components Fabricated Using Selective Laser Melting, Metals, 2019, 9, p 103–111. CrossRef X. Xing, X. Duan, T. Jiang, J. Wang and F. Jiang, Ultrasonic Peening Treatment Used to Improve Stress corrosion Resistance of AlSi10Mg Components Fabricated Using Selective Laser Melting, Metals, 2019, 9, p 103–111. CrossRef
11.
Zurück zum Zitat A. Amanov, Advancement of Tribological Properties of Ti–6Al–4V Alloy Fabricated by Selective Laser Melting, Tribol. Int., 2021, 155, 106806. A. Amanov, Advancement of Tribological Properties of Ti–6Al–4V Alloy Fabricated by Selective Laser Melting, Tribol. Int., 2021, 155, 106806.
12.
Zurück zum Zitat D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, and G.I. Prokopenko, Post-processing of the Inconel 718 Alloy Parts Fabricated by Selective Laser Melting: Effects of Mechanical Surface Treatments on Surface Topography, Porosity, Hardness and Residual Stress, Surf. Coat. Technol., 2020, 381, 125136. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, and G.I. Prokopenko, Post-processing of the Inconel 718 Alloy Parts Fabricated by Selective Laser Melting: Effects of Mechanical Surface Treatments on Surface Topography, Porosity, Hardness and Residual Stress, Surf. Coat. Technol., 2020, 381, 125136.
13.
Zurück zum Zitat L. Hackel, J.R. Rankin, A. Rubenchik, W.E. King and M. Matthews, Laser Peening: A Tool for Additive Manufacturing Post-processing, Addit. Manuf., 2018, 24, p 67–75. L. Hackel, J.R. Rankin, A. Rubenchik, W.E. King and M. Matthews, Laser Peening: A Tool for Additive Manufacturing Post-processing, Addit. Manuf., 2018, 24, p 67–75.
14.
Zurück zum Zitat N. Kalentics, E. Boillat, P. Peyre, C. Gorny, C. Kenel, C. Leinenbach, J. Jhabvala and R.E. Loge, 3D Laser Shock Peening: A New Method for the 3D Control of Residual Stresses in Selective Laser Melting, Mater. Des., 2017, 130, p 350–356. CrossRef N. Kalentics, E. Boillat, P. Peyre, C. Gorny, C. Kenel, C. Leinenbach, J. Jhabvala and R.E. Loge, 3D Laser Shock Peening: A New Method for the 3D Control of Residual Stresses in Selective Laser Melting, Mater. Des., 2017, 130, p 350–356. CrossRef
15.
Zurück zum Zitat H. Sasaki, F. Takeo, and H.Soyama, Cavitation Erosion Resistance of the Titanium Alloy Ti–6Al–4V Manufactured Through Additive Manufacturing with Various Peening Methods, Wear, 2020, 462–463, 203518. H. Sasaki, F. Takeo, and H.Soyama, Cavitation Erosion Resistance of the Titanium Alloy Ti–6Al–4V Manufactured Through Additive Manufacturing with Various Peening Methods, Wear, 2020, 462–463, 203518.
16.
Zurück zum Zitat H. Soyama and Y. Okura, The Use of Various Peening Methods to Improve the Fatigue Strength of Titanium Alloy Ti6Al4V Manufactured by Electron Beam Melting, Mater. Sci., 2018, 5, p 1000–1015. H. Soyama and Y. Okura, The Use of Various Peening Methods to Improve the Fatigue Strength of Titanium Alloy Ti6Al4V Manufactured by Electron Beam Melting, Mater. Sci., 2018, 5, p 1000–1015.
17.
Zurück zum Zitat M. Khorasani, I. Gibson, A.H. Ghasemi, M. Brandt and M. Leary, On the Role of Wet Abrasive Centrifugal Barrel Finishing on Surface Enhancement and Material Removal rate of LPBF Stainless Steel 316L, J. Manuf. Process, 2020, 59, p 523–534. CrossRef M. Khorasani, I. Gibson, A.H. Ghasemi, M. Brandt and M. Leary, On the Role of Wet Abrasive Centrifugal Barrel Finishing on Surface Enhancement and Material Removal rate of LPBF Stainless Steel 316L, J. Manuf. Process, 2020, 59, p 523–534. CrossRef
18.
Zurück zum Zitat A. Boschetto, L. Bottini, L. Macera and F. Veniali, Post-processing of Complex SLM Parts by Barrel Finishing, Appl. Sci., 2020, 10, p 1382. CrossRef A. Boschetto, L. Bottini, L. Macera and F. Veniali, Post-processing of Complex SLM Parts by Barrel Finishing, Appl. Sci., 2020, 10, p 1382. CrossRef
19.
Zurück zum Zitat Y. Kaynak and E. Tascioglu, Post Processing Effects on the Surface Characteristics of Inconel 718 Alloy Fabricated by Selective Laser Melting Additive Manufacturing, Prog. Addit. Manuf., 2020, 5, p 221–234. CrossRef Y. Kaynak and E. Tascioglu, Post Processing Effects on the Surface Characteristics of Inconel 718 Alloy Fabricated by Selective Laser Melting Additive Manufacturing, Prog. Addit. Manuf., 2020, 5, p 221–234. CrossRef
20.
Zurück zum Zitat Z. Baicheng, L. Xiaohua, B. Jiaming, G. Junfeng, W. Pan, S. Chen-nan, N. Muiling, Q. Guojun and W. Jun, Study of Selective Laser Melting (SLM) Inconel 718 Part Surface Improvement by Electrochemical Polishing, Mater. Des., 2017, 116, p 531–537. CrossRef Z. Baicheng, L. Xiaohua, B. Jiaming, G. Junfeng, W. Pan, S. Chen-nan, N. Muiling, Q. Guojun and W. Jun, Study of Selective Laser Melting (SLM) Inconel 718 Part Surface Improvement by Electrochemical Polishing, Mater. Des., 2017, 116, p 531–537. CrossRef
21.
Zurück zum Zitat D.A. Lesyk, S. Martinez, O.O. Pedash, V.V. Dzhemelinskyi, and B.N. Mordyuk, Combined thermo-mechanical techniques for post-processing of the SLM-printed Ni-Cr-Fe alloy parts, In: Ivanov V. et al. (eds) Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering, 2020, p 295–304. D.A. Lesyk, S. Martinez, O.O. Pedash, V.V. Dzhemelinskyi, and B.N. Mordyuk, Combined thermo-mechanical techniques for post-processing of the SLM-printed Ni-Cr-Fe alloy parts, In: Ivanov V. et al. (eds) Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering, 2020, p 295–304.
22.
Zurück zum Zitat O.V. Mythreyi, A. Raja, B.K. Nagesha and R. Jayaganthan, Corrosion Study of Selective Laser Melted IN718 Alloy Upon Post Heat Treatment and Shot Peening, Metals, 2020, 10, p 1562. CrossRef O.V. Mythreyi, A. Raja, B.K. Nagesha and R. Jayaganthan, Corrosion Study of Selective Laser Melted IN718 Alloy Upon Post Heat Treatment and Shot Peening, Metals, 2020, 10, p 1562. CrossRef
23.
Zurück zum Zitat D.T. Ardi, L. Guowei, N. Maharjan, B. Mutiargo, S.H. Leng, and R. Srinivasan, Effects of Post-processing Route on Fatigue Performance of Laser Powder Bed Fusion Inconel 718, Addit. Manuf., 2020, 36, 101442. D.T. Ardi, L. Guowei, N. Maharjan, B. Mutiargo, S.H. Leng, and R. Srinivasan, Effects of Post-processing Route on Fatigue Performance of Laser Powder Bed Fusion Inconel 718, Addit. Manuf., 2020, 36, 101442.
24.
Zurück zum Zitat X. Yan, S. Yin, C. Chen, R. Jenkins, R. Lupoi, R. Bolot, W. Ma, M. Kuang, H. Liao, J. Lu and M. Liu, Fatigue Strength Improvement of Selective Laser Melted Ti6Al4V Using Ultrasonic Surface Mechanical Attrition, Mater. Res. Lett., 2019, 7, p 327–333. CrossRef X. Yan, S. Yin, C. Chen, R. Jenkins, R. Lupoi, R. Bolot, W. Ma, M. Kuang, H. Liao, J. Lu and M. Liu, Fatigue Strength Improvement of Selective Laser Melted Ti6Al4V Using Ultrasonic Surface Mechanical Attrition, Mater. Res. Lett., 2019, 7, p 327–333. CrossRef
25.
Zurück zum Zitat C.S. Bagherifard, N. Beretta, S. Monti, M. Riccio, M. Bandini and M. Guagliano, On the Fatigue Strength Enhancement of Additive Manufactured AlSi10Mg Parts by Mechanical and Thermal Post-processing, Mater. Des., 2018, 145, p 28–41. CrossRef C.S. Bagherifard, N. Beretta, S. Monti, M. Riccio, M. Bandini and M. Guagliano, On the Fatigue Strength Enhancement of Additive Manufactured AlSi10Mg Parts by Mechanical and Thermal Post-processing, Mater. Des., 2018, 145, p 28–41. CrossRef
26.
Zurück zum Zitat M. Zhang, C. Liu, X. Shi, X. Chen, C. Chen, J. Zuo, J. Lu and S. Ma, Residual Stress, Defects and Grain Morphology of Ti-6Al-4V Alloy Produced by Ultrasonic Impact Treatment Assisted Selective Laser Melting, Appl. Sci., 2016, 6, p 304–311. CrossRef M. Zhang, C. Liu, X. Shi, X. Chen, C. Chen, J. Zuo, J. Lu and S. Ma, Residual Stress, Defects and Grain Morphology of Ti-6Al-4V Alloy Produced by Ultrasonic Impact Treatment Assisted Selective Laser Melting, Appl. Sci., 2016, 6, p 304–311. CrossRef
27.
Zurück zum Zitat Z. Wang, Z. Xiao, C. Huang, L. Wen and W. Zhang, Influence of Ultrasonic Surface Rolling on Microstructure and Wear Behavior of Selective Laser Melted Ti-6Al-4V Alloy, Mater., 2017, 10, p 1203. CrossRef Z. Wang, Z. Xiao, C. Huang, L. Wen and W. Zhang, Influence of Ultrasonic Surface Rolling on Microstructure and Wear Behavior of Selective Laser Melted Ti-6Al-4V Alloy, Mater., 2017, 10, p 1203. CrossRef
28.
Zurück zum Zitat H. Soyama and F. Takeo, Effect of Various Peening Methods on the Fatigue Properties of Titanium Alloy Ti6Al4V Manufactured by Direct Metal Laser Sintering and Electron Beam Melting, Mater., 2020, 13, p 2216. CrossRef H. Soyama and F. Takeo, Effect of Various Peening Methods on the Fatigue Properties of Titanium Alloy Ti6Al4V Manufactured by Direct Metal Laser Sintering and Electron Beam Melting, Mater., 2020, 13, p 2216. CrossRef
29.
Zurück zum Zitat B. AlMangour and J.M. Yang, Improving the Surface Quality and Mechanical Properties by Shot-Peening of 17–4 Stainless Steel Fabricated by Additive Manufacturing, Mater. Des., 2016, 110, p 914–924. CrossRef B. AlMangour and J.M. Yang, Improving the Surface Quality and Mechanical Properties by Shot-Peening of 17–4 Stainless Steel Fabricated by Additive Manufacturing, Mater. Des., 2016, 110, p 914–924. CrossRef
30.
Zurück zum Zitat M. Sugavaneswaran, A.V. Jebaraj, M.D.B. Kumar, K. Lokesh and A.J. Rajan, Enhancement of Surface Characteristics of Direct Metal Laser Sintered Stainless Steel 316L by Shot Peening, Surf. Interf., 2018, 12, p 31–40. CrossRef M. Sugavaneswaran, A.V. Jebaraj, M.D.B. Kumar, K. Lokesh and A.J. Rajan, Enhancement of Surface Characteristics of Direct Metal Laser Sintered Stainless Steel 316L by Shot Peening, Surf. Interf., 2018, 12, p 31–40. CrossRef
31.
Zurück zum Zitat J. Damon, S. Dietrich, F. Vollert, J. Gibmeier and V. Schulze, Process Dependent Porosity and the Influence of Shot Peening on Porosity Morphology Regarding Selective Laser Melted AlSi10Mg Parts, Addit. Manuf., 2018, 20, p 77–89. J. Damon, S. Dietrich, F. Vollert, J. Gibmeier and V. Schulze, Process Dependent Porosity and the Influence of Shot Peening on Porosity Morphology Regarding Selective Laser Melted AlSi10Mg Parts, Addit. Manuf., 2018, 20, p 77–89.
32.
Zurück zum Zitat S. Martinez, N. Ortega, D. Celentano, A.J.S. Egea, E. Ukar and A. Lamikiz, Analysis of the Part Distortions for Inconel 718 SLM: A Case Study on the NIST Test Artifact, Mater., 2020, 13, p 5087. CrossRef S. Martinez, N. Ortega, D. Celentano, A.J.S. Egea, E. Ukar and A. Lamikiz, Analysis of the Part Distortions for Inconel 718 SLM: A Case Study on the NIST Test Artifact, Mater., 2020, 13, p 5087. CrossRef
33.
Zurück zum Zitat D.J. Child, G.D. West and R.C. Thomson, Assessment of Surface Hardening Effects from Shot Peening on a Ni-based Alloy Using Electron Backscatter Diffraction Techniques, Acta Mater., 2011, 59, p 4825–4834. CrossRef D.J. Child, G.D. West and R.C. Thomson, Assessment of Surface Hardening Effects from Shot Peening on a Ni-based Alloy Using Electron Backscatter Diffraction Techniques, Acta Mater., 2011, 59, p 4825–4834. CrossRef
34.
Zurück zum Zitat D.A. Lesyk, B.N. Mordyuk, S. Martinez, M.O. Iefimov, V.V. Dzhemelinskyi, and A. Lamikiz, Influence of Combined Laser Heat Treatment and Ultrasonic Impact Treatment on Microstructure and Corrosion Behavior of AISI 1045 Steel, Surf. Coat. Technol., 2020, 401, 126275. D.A. Lesyk, B.N. Mordyuk, S. Martinez, M.O. Iefimov, V.V. Dzhemelinskyi, and A. Lamikiz, Influence of Combined Laser Heat Treatment and Ultrasonic Impact Treatment on Microstructure and Corrosion Behavior of AISI 1045 Steel, Surf. Coat. Technol., 2020, 401, 126275.
35.
Zurück zum Zitat D.A. Lesyk, S. Martinez, V.V. Dzhemelinskyi, O. Stamann, B.N. Mordyuk, and A. Lamikiz, Surface Polishing of Laser Powder Bed Fused Superalloy Components by Magnetic Post-treatment, 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), 2020, 20327559, p 02SAMA17-1–02SAMA17-4. D.A. Lesyk, S. Martinez, V.V. Dzhemelinskyi, O. Stamann, B.N. Mordyuk, and A. Lamikiz, Surface Polishing of Laser Powder Bed Fused Superalloy Components by Magnetic Post-treatment, 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), 2020, 20327559, p 02SAMA17-1–02SAMA17-4.
36.
Zurück zum Zitat M. Lutter-Günther, M. Bröker, T. Mayer, S. Lizak, C. Seidel and G. Reinhart, Spatter Formation During Laser Beam Melting of AlSi10Mg and Effects on Powder Quality, Procedia CIRP, 2018, 74, p 33–38. CrossRef M. Lutter-Günther, M. Bröker, T. Mayer, S. Lizak, C. Seidel and G. Reinhart, Spatter Formation During Laser Beam Melting of AlSi10Mg and Effects on Powder Quality, Procedia CIRP, 2018, 74, p 33–38. CrossRef
37.
Zurück zum Zitat J. Wang, S. Liu, Y. Fang and Z. He, A Short Review on Selective Laser Melting of H13 Steel, Int. J. Adv. Manuf. Syst., 2020, 108, p 2453–2466. CrossRef J. Wang, S. Liu, Y. Fang and Z. He, A Short Review on Selective Laser Melting of H13 Steel, Int. J. Adv. Manuf. Syst., 2020, 108, p 2453–2466. CrossRef
38.
Zurück zum Zitat D. Cai, P. Nie, J. Shan, W. Liu, Y. Gao and M. Yao, Precipitation and Residual Stress Relaxation Kinetics in Shot-Peened Inconel 718, J. Mater. Eng. Perform., 2006, 15, p 614–617. CrossRef D. Cai, P. Nie, J. Shan, W. Liu, Y. Gao and M. Yao, Precipitation and Residual Stress Relaxation Kinetics in Shot-Peened Inconel 718, J. Mater. Eng. Perform., 2006, 15, p 614–617. CrossRef
39.
Zurück zum Zitat X.P. Wei, W.J. Zheng, Z.G. Song, T. Lei, Q.l. Yong, and Q.C. Xie, Strain-Induced Precipitation Behavior of δ Phase in Inconel 718 Alloy, J. Iron Steel Res. Int., 2014, 3, p 375–381. X.P. Wei, W.J. Zheng, Z.G. Song, T. Lei, Q.l. Yong, and Q.C. Xie, Strain-Induced Precipitation Behavior of δ Phase in Inconel 718 Alloy, J. Iron Steel Res. Int., 2014, 3, p 375–381.
40.
Zurück zum Zitat R.J. Vikram, A. Singh and S. Suwas, Effect of Heat Treatment on the Modification of Microstructure of Selective Laser Melted (SLM) IN718 and Its Consequences on Mechanical Behavior, J. Mater. Res., 2020, 35, p 1949–1962. CrossRef R.J. Vikram, A. Singh and S. Suwas, Effect of Heat Treatment on the Modification of Microstructure of Selective Laser Melted (SLM) IN718 and Its Consequences on Mechanical Behavior, J. Mater. Res., 2020, 35, p 1949–1962. CrossRef
41.
Zurück zum Zitat L.S.B. Ling, Z. Yin, Z. Hu, J.H. Liang, Z.-Y. Wang, J. Wang and B.D. Sun, Effects of the γ”-Ni3Nb Phase on Mechanical Properties of Inconel 718 Superalloys with Different Heat Treatments, Mater., 2020, 13, p 151. CrossRef L.S.B. Ling, Z. Yin, Z. Hu, J.H. Liang, Z.-Y. Wang, J. Wang and B.D. Sun, Effects of the γ”-Ni3Nb Phase on Mechanical Properties of Inconel 718 Superalloys with Different Heat Treatments, Mater., 2020, 13, p 151. CrossRef
42.
Zurück zum Zitat Y. Tian, D. McAllister, H. Colijn, M. Mills, D. Farson, M. Nordin and S. Babu, Rationalization of Microstructure Heterogeneity in INCONEL 718 Builds Made by the Direct Laser Additive Manufacturing Process, Met. Mat. Trans. A, 2014, 45, p 4470–4483. CrossRef Y. Tian, D. McAllister, H. Colijn, M. Mills, D. Farson, M. Nordin and S. Babu, Rationalization of Microstructure Heterogeneity in INCONEL 718 Builds Made by the Direct Laser Additive Manufacturing Process, Met. Mat. Trans. A, 2014, 45, p 4470–4483. CrossRef
43.
Zurück zum Zitat M. Renderos, A. Torregaray, M. Esther Gutierrez-Orrantia, A. Lamikiz, N. Saintier, and F. Girot, Microstructure Characterization of Recycled IN718 Powder and Resulting Laser Clad Material, Mater. Charact., 2017, 134, p 103–113. M. Renderos, A. Torregaray, M. Esther Gutierrez-Orrantia, A. Lamikiz, N. Saintier, and F. Girot, Microstructure Characterization of Recycled IN718 Powder and Resulting Laser Clad Material, Mater. Charact., 2017, 134, p 103–113.
44.
Zurück zum Zitat C. Kumara, A. Segerstark, F. Hanning, N. Dixit, S. Joshi, J. Moverare and P. Nylen, Microstructure Modelling of Laser Metal Powder Directed Energy Deposition of Alloy 718, Addit. Manuf., 2019, 25, p 357–364. C. Kumara, A. Segerstark, F. Hanning, N. Dixit, S. Joshi, J. Moverare and P. Nylen, Microstructure Modelling of Laser Metal Powder Directed Energy Deposition of Alloy 718, Addit. Manuf., 2019, 25, p 357–364.
45.
Zurück zum Zitat S. Yan, Y. Wang, Q. Wang, C. Zhang, D. Chen and G. Cui, Enhancing Mechanical Properties of the Spark Plasma Sintered Inconel 718 Alloy by Controlling the Nano-scale Precipitations, Mater., 2019, 12, p 3336. CrossRef S. Yan, Y. Wang, Q. Wang, C. Zhang, D. Chen and G. Cui, Enhancing Mechanical Properties of the Spark Plasma Sintered Inconel 718 Alloy by Controlling the Nano-scale Precipitations, Mater., 2019, 12, p 3336. CrossRef
46.
Zurück zum Zitat F. Lyu, F. Liu, X. Hu, X. Yang, C. Huang and D. Shi, The δ Phase Precipitation of an Inconel 718 Superalloy Fabricated by Electromagnetic Stirring Assisted Laser Solid Forming, Mater., 2019, 12, p 2604. CrossRef F. Lyu, F. Liu, X. Hu, X. Yang, C. Huang and D. Shi, The δ Phase Precipitation of an Inconel 718 Superalloy Fabricated by Electromagnetic Stirring Assisted Laser Solid Forming, Mater., 2019, 12, p 2604. CrossRef
Metadaten
Titel
Surface Shot Peening Post-processing of Inconel 718 Alloy Parts Printed by Laser Powder Bed Fusion Additive Manufacturing
verfasst von
D. A. Lesyk
V. V. Dzhemelinskyi
S. Martinez
B. N. Mordyuk
A. Lamikiz
Publikationsdatum
16.08.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06103-6

Weitere Artikel der Ausgabe 9/2021

Journal of Materials Engineering and Performance 9/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.