Skip to main content
Erschienen in: Journal of Coatings Technology and Research 5/2020

08.04.2020

Hydrophilic nano-SiO2/PVA-based coating with durable antifogging properties

verfasst von: Guoqiang Wu, Yuling Yang, Yongtong Lei, Dapeng Fu, Yuchao Li, Yanhu Zhan, Jinming Zhen, Mouyong Teng

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrophilic SiO2/poly(vinyl alcohol) (PVA) coating prepared by solution blended method showed high light transmittance and durable antifogging performance. The effects of SiO2 content and pH value of SiO2 suspension on the morphology and properties of hydrophilic coating were studied by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, contact angle test, ultraviolet visible light spectrophotometer, and antifogging test. Results showed that the PVA had good compatibility with nano-SiO2 because of the formation of Si–O–C chemical bond at the interface between nano-SiO2 and PVA. When prepared at pH = 7, SiO2/PVA coatings (SiO2/PVA mass ratio of 0.8) were hydrophilic, with a water contact angle of 22.9°, and exhibited papilla-like surface features (RMS = 7.6 nm). Polyethylene (PE) samples coated with this SiO2/PVA film exhibited a light transmittance of up to 90%, between 560 and 700 nm, and remained fog-free for more than 1 month after exposure to water at 60°C (QB/T 4475-2013 standard). Water-resisting and wear-resisting tests revealed that antifogging coatings demonstrated excellent mechanical properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sun, Z, Liao, T, Liu, K, et al., “Fly-Eye Inspired Superhydrophobic Anti-Fogging Inorganic Nanostructures.” Small, 10 (15) 3001–3006 (2014)CrossRef Sun, Z, Liao, T, Liu, K, et al., “Fly-Eye Inspired Superhydrophobic Anti-Fogging Inorganic Nanostructures.” Small, 10 (15) 3001–3006 (2014)CrossRef
2.
Zurück zum Zitat Nuraje, N, Asmatulu, R, Cohen, RE, et al., “Durable Antifog Films from Layer-by-Layer Molecularly Blended Hydrophilic Polysaccharides.” Langmuir, 27 (2) 782–791 (2011)CrossRef Nuraje, N, Asmatulu, R, Cohen, RE, et al., “Durable Antifog Films from Layer-by-Layer Molecularly Blended Hydrophilic Polysaccharides.” Langmuir, 27 (2) 782–791 (2011)CrossRef
3.
Zurück zum Zitat Lu, X, Wang, Z, Yang, X, et al., “Antifogging and Antireflective Silica Film and its Application on Solar Modules.” Surf. Coat. Technol., 206 (6) 1490–1494 (2011)CrossRef Lu, X, Wang, Z, Yang, X, et al., “Antifogging and Antireflective Silica Film and its Application on Solar Modules.” Surf. Coat. Technol., 206 (6) 1490–1494 (2011)CrossRef
4.
Zurück zum Zitat Hlavay, J, Gullbault, G, “Applications of the Piezoelectric Crystal Detector in Analytical Chemistry.” Anal. Chem., 49 1890–1898 (1977)CrossRef Hlavay, J, Gullbault, G, “Applications of the Piezoelectric Crystal Detector in Analytical Chemistry.” Anal. Chem., 49 1890–1898 (1977)CrossRef
5.
Zurück zum Zitat Bessell, JR, Flemming, E, Kunert, W, et al., “Maintenance of Clear Vision During Laparoscopic Surgery.” Minim. Invasive Ther. Allied Technol., 5 (5) 450–455 (1996)CrossRef Bessell, JR, Flemming, E, Kunert, W, et al., “Maintenance of Clear Vision During Laparoscopic Surgery.” Minim. Invasive Ther. Allied Technol., 5 (5) 450–455 (1996)CrossRef
6.
Zurück zum Zitat Cemek, B, Demir, Y, “Testing of the Condensation Characteristics and Light Transmissions of Different Plastic Film Covering Materials.” Polym. Test., 24 (3) 284–289 (2005)CrossRef Cemek, B, Demir, Y, “Testing of the Condensation Characteristics and Light Transmissions of Different Plastic Film Covering Materials.” Polym. Test., 24 (3) 284–289 (2005)CrossRef
7.
Zurück zum Zitat Song, K, Park, J, Kang, H, et al., “Synthesis of Hydrophilic Coating Solution for Polymer Substrate Using Glycidoxypropyltrimethoxysilane.” J. Sol-Gel Sci. Technol., 27 (1) 53–59 (2003)CrossRef Song, K, Park, J, Kang, H, et al., “Synthesis of Hydrophilic Coating Solution for Polymer Substrate Using Glycidoxypropyltrimethoxysilane.” J. Sol-Gel Sci. Technol., 27 (1) 53–59 (2003)CrossRef
8.
Zurück zum Zitat Fateh, R, Dillert, R, Bahnemann, D, “Preparation and Characterization of Transparent Hydrophilic Photocatalytic TiO2/SiO2 Thin Films on Polycarbonate.” Langmuir, 29 (11) 3730–3739 (2013)CrossRef Fateh, R, Dillert, R, Bahnemann, D, “Preparation and Characterization of Transparent Hydrophilic Photocatalytic TiO2/SiO2 Thin Films on Polycarbonate.” Langmuir, 29 (11) 3730–3739 (2013)CrossRef
9.
Zurück zum Zitat Wei, H, Liu, K, Chang, Y, et al., “Superior Mechanical Properties of Hybrid Organic-Inorganic Superhydrophilic Thin Film on Plastic Substrate.” Surf. Coat. Technol., 320 377–382 (2017)CrossRef Wei, H, Liu, K, Chang, Y, et al., “Superior Mechanical Properties of Hybrid Organic-Inorganic Superhydrophilic Thin Film on Plastic Substrate.” Surf. Coat. Technol., 320 377–382 (2017)CrossRef
10.
Zurück zum Zitat Du, X, Xing, Y, Zhou, M, et al., “Broadband Antireflective Superhydrophilic Antifogging Nano-coatings Based on Three-Layer System.” Microporous Mesoporous Mater., 255 84–93 (2018)CrossRef Du, X, Xing, Y, Zhou, M, et al., “Broadband Antireflective Superhydrophilic Antifogging Nano-coatings Based on Three-Layer System.” Microporous Mesoporous Mater., 255 84–93 (2018)CrossRef
11.
Zurück zum Zitat Park, S, Park, S, Jang, DH, et al., “Anti-fogging Behavior of Water-Absorbing Polymer Films Derived from Isosorbide-Based Epoxy Resin.” Mater. Lett., 180 81–84 (2016)CrossRef Park, S, Park, S, Jang, DH, et al., “Anti-fogging Behavior of Water-Absorbing Polymer Films Derived from Isosorbide-Based Epoxy Resin.” Mater. Lett., 180 81–84 (2016)CrossRef
12.
Zurück zum Zitat Chevallier, P, Turgeon, S, Sarra-Bournet, C, et al., “Characterization of Multilayer Anti-Fog Coatings.” ACS Appl. Mater. Interfaces, 3 (3) 750–758 (2011)CrossRef Chevallier, P, Turgeon, S, Sarra-Bournet, C, et al., “Characterization of Multilayer Anti-Fog Coatings.” ACS Appl. Mater. Interfaces, 3 (3) 750–758 (2011)CrossRef
13.
Zurück zum Zitat Cebeci, FÇ, Wu, Z, Zhai, L, et al., “Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings.” Langmuir, 22 (6) 2856–2862 (2006)CrossRef Cebeci, FÇ, Wu, Z, Zhai, L, et al., “Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings.” Langmuir, 22 (6) 2856–2862 (2006)CrossRef
14.
Zurück zum Zitat Durán, IR, Laroche, G, “Current Trends, Challenges, and Perspectives of Anti-fogging Technology: Surface and Material Design, Fabrication Strategies, and Beyond.” Prog. Mater. Sci., 99 106–186 (2019)CrossRef Durán, IR, Laroche, G, “Current Trends, Challenges, and Perspectives of Anti-fogging Technology: Surface and Material Design, Fabrication Strategies, and Beyond.” Prog. Mater. Sci., 99 106–186 (2019)CrossRef
15.
Zurück zum Zitat Feng, C, Gou, T, Li, J, et al., “A Highly Transparent Polymer Coating on the Glass with Broadband Antireflection, Antifogging and Antifouling Properties.” Mater. Res. Express, 6 (70) 75319 (2019)CrossRef Feng, C, Gou, T, Li, J, et al., “A Highly Transparent Polymer Coating on the Glass with Broadband Antireflection, Antifogging and Antifouling Properties.” Mater. Res. Express, 6 (70) 75319 (2019)CrossRef
16.
Zurück zum Zitat Luo, S, Qiao, X, Wang, Q, et al., “Excellent Self-healing and Antifogging Coatings Based on Polyvinyl Alcohol/Hydrolyzed Poly(Styrene-co-maleic Anhydride).” J. Mater. Sci., 54 (7) 5961–5970 (2019)CrossRef Luo, S, Qiao, X, Wang, Q, et al., “Excellent Self-healing and Antifogging Coatings Based on Polyvinyl Alcohol/Hydrolyzed Poly(Styrene-co-maleic Anhydride).” J. Mater. Sci., 54 (7) 5961–5970 (2019)CrossRef
17.
Zurück zum Zitat Saxena, N, Naik, T, Paria, S, “Organization of SiO2 and TiO2 Nanoparticles into Fractal Patterns on Glass Surface for the Generation of Superhydrophilicity.” J. Phys. Chem. C, 121 (4) 2428–2436 (2017)CrossRef Saxena, N, Naik, T, Paria, S, “Organization of SiO2 and TiO2 Nanoparticles into Fractal Patterns on Glass Surface for the Generation of Superhydrophilicity.” J. Phys. Chem. C, 121 (4) 2428–2436 (2017)CrossRef
18.
Zurück zum Zitat Chen, J, Zhang, L, Zeng, Z, et al., “Facile Fabrication of Antifogging, Antireflective, and Self-cleaning Transparent Silica Thin Coatings.” Colloids Surf. A Physicochem. Eng. Asp., 509 149–157 (2016)CrossRef Chen, J, Zhang, L, Zeng, Z, et al., “Facile Fabrication of Antifogging, Antireflective, and Self-cleaning Transparent Silica Thin Coatings.” Colloids Surf. A Physicochem. Eng. Asp., 509 149–157 (2016)CrossRef
19.
Zurück zum Zitat Zhao, Z, Zhang, D, Tai, L, et al., “A Facile and Low-Cost Preparation of Durable Amphiphobic Coatings with Fluoride–Silica@Poly(Methacrylic Acid) Hybrid Nanocomposites.” J. Coat. Technol. Res., 14 (6) 1369–1380 (2017)CrossRef Zhao, Z, Zhang, D, Tai, L, et al., “A Facile and Low-Cost Preparation of Durable Amphiphobic Coatings with Fluoride–Silica@Poly(Methacrylic Acid) Hybrid Nanocomposites.” J. Coat. Technol. Res., 14 (6) 1369–1380 (2017)CrossRef
20.
Zurück zum Zitat Cao, L, Hao, H, Dutta, PK, “Fabrication of High-Performance Antifogging and Antireflective Coatings Using Faujasitic Nanozeolites.” Microporous Mesoporous Mater., 263 62–70 (2018)CrossRef Cao, L, Hao, H, Dutta, PK, “Fabrication of High-Performance Antifogging and Antireflective Coatings Using Faujasitic Nanozeolites.” Microporous Mesoporous Mater., 263 62–70 (2018)CrossRef
21.
Zurück zum Zitat Liu, H, Feng, L, Zhai, J, et al., “Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film Between Superhydrophobicity and Superhydrophilicity.” Langmuir, 20 (14) 5659–5661 (2004)CrossRef Liu, H, Feng, L, Zhai, J, et al., “Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film Between Superhydrophobicity and Superhydrophilicity.” Langmuir, 20 (14) 5659–5661 (2004)CrossRef
22.
Zurück zum Zitat Yang, F, Wang, P, Yang, X, et al., “Antifogging and Anti-frosting Coatings by Dip-Layer-by-Layer Self-assembly of Just Triple-Layer Oppositely Charged Nanoparticles.” Thin Solid Films, 634 85–95 (2017)CrossRef Yang, F, Wang, P, Yang, X, et al., “Antifogging and Anti-frosting Coatings by Dip-Layer-by-Layer Self-assembly of Just Triple-Layer Oppositely Charged Nanoparticles.” Thin Solid Films, 634 85–95 (2017)CrossRef
23.
Zurück zum Zitat Miyauchi, M, Shibuya, M, Zhao, Z, et al., “Surface Wetting Behavior of a WO3 Electrode Under Light-Irradiated or Potential-Controlled Conditions.” J. Phys. Chem. C, 113 (24) 10642–10646 (2009)CrossRef Miyauchi, M, Shibuya, M, Zhao, Z, et al., “Surface Wetting Behavior of a WO3 Electrode Under Light-Irradiated or Potential-Controlled Conditions.” J. Phys. Chem. C, 113 (24) 10642–10646 (2009)CrossRef
24.
Zurück zum Zitat Hu, J, Wu, S, Lou, B, “Research on Preparation of Transparent Hydrophilic Antifogging Acrylate Resin.” Mater. Sci. Forum, 704 92–101 (2012) Hu, J, Wu, S, Lou, B, “Research on Preparation of Transparent Hydrophilic Antifogging Acrylate Resin.” Mater. Sci. Forum, 704 92–101 (2012)
25.
Zurück zum Zitat Liang, T, Li, H, Lai, X, et al., “A Facile Approach to UV-Curable Super-Hydrophilic Polyacrylate Coating Film Grafted On Glass Substrate.” J. Coat. Technol. Res., 13 (6) 1115–1121 (2016)CrossRef Liang, T, Li, H, Lai, X, et al., “A Facile Approach to UV-Curable Super-Hydrophilic Polyacrylate Coating Film Grafted On Glass Substrate.” J. Coat. Technol. Res., 13 (6) 1115–1121 (2016)CrossRef
27.
Zurück zum Zitat Lee, H, Alcaraz, ML, Rubner, MF, et al., “Zwitter-Wettability and Antifogging Coatings with Frost-Resisting Capabilities.” ACS Nano, 7 (3) 2172–2185 (2013)CrossRef Lee, H, Alcaraz, ML, Rubner, MF, et al., “Zwitter-Wettability and Antifogging Coatings with Frost-Resisting Capabilities.” ACS Nano, 7 (3) 2172–2185 (2013)CrossRef
28.
Zurück zum Zitat Lee, H, Gilbert, JB, Angilè, FE, et al., “Design and Fabrication of Zwitter-Wettable Nanostructured Films.” ACS Appl. Mater. Interfaces, 7 (1) 1004–1011 (2014)CrossRef Lee, H, Gilbert, JB, Angilè, FE, et al., “Design and Fabrication of Zwitter-Wettable Nanostructured Films.” ACS Appl. Mater. Interfaces, 7 (1) 1004–1011 (2014)CrossRef
29.
Zurück zum Zitat Zhang, X, He, J, “Hydrogen-Bonding-Supported Self-Healing Antifogging Thin Films.” Sci. Rep., 5 (1) 9227 (2015)CrossRef Zhang, X, He, J, “Hydrogen-Bonding-Supported Self-Healing Antifogging Thin Films.” Sci. Rep., 5 (1) 9227 (2015)CrossRef
30.
Zurück zum Zitat Zhao, J, Ma, L, Millians, W, et al., “Dual-Functional Antifogging/Antimicrobial Polymer Coating.” ACS Appl. Mater. Interfaces, 8 (13) 8737–8742 (2016)CrossRef Zhao, J, Ma, L, Millians, W, et al., “Dual-Functional Antifogging/Antimicrobial Polymer Coating.” ACS Appl. Mater. Interfaces, 8 (13) 8737–8742 (2016)CrossRef
31.
Zurück zum Zitat Shibraen, MHMA, Yagoub, H, Zhang, X, et al., “Anti-fogging and Anti-frosting Behaviors of Layer-by-Layer Assembled Cellulose Derivative Thin Film.” Appl. Surf. Sci., 370 1–5 (2016)CrossRef Shibraen, MHMA, Yagoub, H, Zhang, X, et al., “Anti-fogging and Anti-frosting Behaviors of Layer-by-Layer Assembled Cellulose Derivative Thin Film.” Appl. Surf. Sci., 370 1–5 (2016)CrossRef
32.
Zurück zum Zitat Grube, S, Siegmann, K, Hirayama, M, “A Moisture-Absorbing and Abrasion-Resistant Transparent Coating on Polystyrene.” J. Coat. Technol. Res., 12 (4) 669–680 (2015)CrossRef Grube, S, Siegmann, K, Hirayama, M, “A Moisture-Absorbing and Abrasion-Resistant Transparent Coating on Polystyrene.” J. Coat. Technol. Res., 12 (4) 669–680 (2015)CrossRef
33.
Zurück zum Zitat Pirzada, T, Arvidson, SA, Saquing, CD, et al., “Hybrid Silica-PVA Nanofibers via Sol-Gel Electrospinning.” Langmuir, 28 (13) 5834–5844 (2012)CrossRef Pirzada, T, Arvidson, SA, Saquing, CD, et al., “Hybrid Silica-PVA Nanofibers via Sol-Gel Electrospinning.” Langmuir, 28 (13) 5834–5844 (2012)CrossRef
34.
Zurück zum Zitat Tong, B, Cheng, C, Khan, MI, et al., “Double Cross-Linking PVA-SiO2 Hybrid Membranes for Alkali Recovery.” Sep. Purif. Technol., 174 203–211 (2017)CrossRef Tong, B, Cheng, C, Khan, MI, et al., “Double Cross-Linking PVA-SiO2 Hybrid Membranes for Alkali Recovery.” Sep. Purif. Technol., 174 203–211 (2017)CrossRef
35.
Zurück zum Zitat Liu, H, Yu, H, Yuan, X, et al., “Amino-Functionalized Mesoporous PVA/SiO2 Hybrids Coated Membrane for Simultaneous Removal of Oils and Water-Soluble Contaminants From Emulsion.” Chem. Eng. J., 374 1394–1402 (2019)CrossRef Liu, H, Yu, H, Yuan, X, et al., “Amino-Functionalized Mesoporous PVA/SiO2 Hybrids Coated Membrane for Simultaneous Removal of Oils and Water-Soluble Contaminants From Emulsion.” Chem. Eng. J., 374 1394–1402 (2019)CrossRef
36.
Zurück zum Zitat Haq, AU, Boyd, A, Acheson, J, et al., “Corona Discharge-Induced Functional Surfaces of Polycarbonate and Cyclic Olefins Substrates.” Surf. Coat. Technol., 362 185–190 (2019)CrossRef Haq, AU, Boyd, A, Acheson, J, et al., “Corona Discharge-Induced Functional Surfaces of Polycarbonate and Cyclic Olefins Substrates.” Surf. Coat. Technol., 362 185–190 (2019)CrossRef
37.
Zurück zum Zitat Topçu Kaya, AS, Cengiz, U, “Fabrication and Application of Superhydrophilic Antifog Surface by Sol-Gel Method.” Prog. Org. Coat., 126 75–82 (2019)CrossRef Topçu Kaya, AS, Cengiz, U, “Fabrication and Application of Superhydrophilic Antifog Surface by Sol-Gel Method.” Prog. Org. Coat., 126 75–82 (2019)CrossRef
38.
Zurück zum Zitat Ye, L, Zhang, Y, Song, C, et al., “A Simple Sol-Gel Method to Prepare Superhydrophilic Silica Coatings.” Mater. Lett., 188 316–318 (2017)CrossRef Ye, L, Zhang, Y, Song, C, et al., “A Simple Sol-Gel Method to Prepare Superhydrophilic Silica Coatings.” Mater. Lett., 188 316–318 (2017)CrossRef
39.
Zurück zum Zitat QB/T 4475-2013. “Long Term Anti-Drip Polyethylene Greenhouse Film with Coating.” S, 41602-2013 QB/T 4475-2013. “Long Term Anti-Drip Polyethylene Greenhouse Film with Coating.” S, 41602-2013
40.
Zurück zum Zitat Liao, W, Teng, H, Qu, J, et al., “Fabrication of Chemically Bonded Polyacrylate/Silica Hybrid Films with High Silicon Contents by the Sol–Gel Method.” Prog. Org. Coat., 71 (4) 376–383 (2011)CrossRef Liao, W, Teng, H, Qu, J, et al., “Fabrication of Chemically Bonded Polyacrylate/Silica Hybrid Films with High Silicon Contents by the Sol–Gel Method.” Prog. Org. Coat., 71 (4) 376–383 (2011)CrossRef
41.
Zurück zum Zitat Venckatesh, R, Balachandaran, K, Sivaraj, R, “Synthesis and Characterization of Nano TiO2-SiO2: PVA Composite—A Novel Route.” Int. Nano Lett., 2 (1) 1–5 (2012)CrossRef Venckatesh, R, Balachandaran, K, Sivaraj, R, “Synthesis and Characterization of Nano TiO2-SiO2: PVA Composite—A Novel Route.” Int. Nano Lett., 2 (1) 1–5 (2012)CrossRef
42.
Zurück zum Zitat Xu, Y, Li, Z, Fan, W, et al., “Density Fluctuation in Silica-PVA Hybrid Gels Determined by Small-Angle X-ray Scattering.” Appl. Surf. Sci., 225 (1) 116–123 (2004)CrossRef Xu, Y, Li, Z, Fan, W, et al., “Density Fluctuation in Silica-PVA Hybrid Gels Determined by Small-Angle X-ray Scattering.” Appl. Surf. Sci., 225 (1) 116–123 (2004)CrossRef
43.
Zurück zum Zitat Iván, R, Gaétan, L, “Water Drop-Surface Interactions as the Basis for the Design of Anti-fogging Surfaces-Theory, Practice, and Applications Trends.” Adv. Colloid Interface Sci., 263 68–94 (2019)CrossRef Iván, R, Gaétan, L, “Water Drop-Surface Interactions as the Basis for the Design of Anti-fogging Surfaces-Theory, Practice, and Applications Trends.” Adv. Colloid Interface Sci., 263 68–94 (2019)CrossRef
44.
Zurück zum Zitat Si, Y, Dong, Z, Jiang, L, “Bioinspired Designs of Superhydrophobic and Superhydrophilic Materials.” ACS Cent. Sci., 4 (9) 1102–1112 (2018)CrossRef Si, Y, Dong, Z, Jiang, L, “Bioinspired Designs of Superhydrophobic and Superhydrophilic Materials.” ACS Cent. Sci., 4 (9) 1102–1112 (2018)CrossRef
45.
Zurück zum Zitat Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 (8) 988–994 (1936)CrossRef Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 (8) 988–994 (1936)CrossRef
46.
Zurück zum Zitat Cassie, A, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–551 (1944)CrossRef Cassie, A, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–551 (1944)CrossRef
47.
Zurück zum Zitat Liao, W, Huang, X, Ye, L, et al., “Synthesis of Composite Latexes of Polyhedral Oligomericsilsesquioxane and Fluorine Containing Poly(styrene-acrylate) by Emulsion Copolymerization.” J. Appl. Polym. Sci., 133 (21) 933 (2016)CrossRef Liao, W, Huang, X, Ye, L, et al., “Synthesis of Composite Latexes of Polyhedral Oligomericsilsesquioxane and Fluorine Containing Poly(styrene-acrylate) by Emulsion Copolymerization.” J. Appl. Polym. Sci., 133 (21) 933 (2016)CrossRef
48.
Zurück zum Zitat Feng, C, Zhang, Z, Li, J, et al., “A Bioinspired, Highly Transparent Surface with Dry-Style Antifogging, Antifrosting, Antifouling, and Moisture Self-Cleaning Properties.” Macromol. Rapid Commun., 40 (6) 1800708 (2019)CrossRef Feng, C, Zhang, Z, Li, J, et al., “A Bioinspired, Highly Transparent Surface with Dry-Style Antifogging, Antifrosting, Antifouling, and Moisture Self-Cleaning Properties.” Macromol. Rapid Commun., 40 (6) 1800708 (2019)CrossRef
49.
Zurück zum Zitat Kalapat, N, Amornsakchai, T, “Surface Modification of Biaxially Oriented Polypropylene (BOPP) Film Using Acrylic Acid-Corona Treatment: Part I. Properties and Characterization of Treated Films.” Surf. Coat. Technol., 207 594–601 (2012)CrossRef Kalapat, N, Amornsakchai, T, “Surface Modification of Biaxially Oriented Polypropylene (BOPP) Film Using Acrylic Acid-Corona Treatment: Part I. Properties and Characterization of Treated Films.” Surf. Coat. Technol., 207 594–601 (2012)CrossRef
Metadaten
Titel
Hydrophilic nano-SiO2/PVA-based coating with durable antifogging properties
verfasst von
Guoqiang Wu
Yuling Yang
Yongtong Lei
Dapeng Fu
Yuchao Li
Yanhu Zhan
Jinming Zhen
Mouyong Teng
Publikationsdatum
08.04.2020
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 5/2020
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-020-00338-z

Weitere Artikel der Ausgabe 5/2020

Journal of Coatings Technology and Research 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.