Skip to main content
Erschienen in: Rare Metals 11/2015

01.11.2015

Optimization of electrocatalytic properties of NiMoCo foam electrode for water electrolysis by post-treatment processing

verfasst von: Jian-Wei Wang, Yue-Fa Wang, Jing-Guo Zhang, Yan-Lin Yu, Ge-Ge Zhou, Lei Cheng, Lin-Shan Wang, Z. Zak Fang

Erschienen in: Rare Metals | Ausgabe 11/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogen is a potential alternative to fossil fuels in coping with the increased global energy demand, and water electrolysis is an attractive approach for H2 production. Nickel–molybdenum–cobalt (NiMoCo) foam electrodes used for water electrolysis were prepared by the electrodeposition method, and the influence of heat treatments on the surface structure of NiMoCo foam electrodes, mechanical properties, and electrochemical performance of the synthesized electrodes was investigated in order to optimize the post-treatment processes. The residual carbon in the surface of the electrode was removed by decarbonization in the atmospheric condition. The carbon content decreases to lower than 200 × 10−6 when the temperature exceeds 500 °C. Next, the material is reduced in hydrogen atmosphere from 500 to 1100 °C to remove the surface oxides. As the temperature increases, the surface molybdenum content increases significantly between 500 and 800 °C, the surface grains become coarser, and the tensile strength and elongation increase as well. The lowest polarization overpotential is obtained at 800 °C. Below 800 °C, the electrode is only partially reduced and some black oxide zones are observed on the electrode surface, which leads to the higher polarization overpotential. The samples heat-treated at the temperatures of higher than 800 °C show better strength and toughness as well as brighter appearance. However, the surface particle coarsening leads to a decrease in the specific surface area and a higher overpotential.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA. 2006;103(43):15729.CrossRef Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA. 2006;103(43):15729.CrossRef
[2]
Zurück zum Zitat Armor JN. The multiple roles for catalysis in the production of H2. Appl Catal A Gen. 1999;176(2):159.CrossRef Armor JN. The multiple roles for catalysis in the production of H2. Appl Catal A Gen. 1999;176(2):159.CrossRef
[3]
Zurück zum Zitat Jain IP. Hydrogen the fuel for 21st century. Int J Hydrogen Energy. 2009;34(17):368.CrossRef Jain IP. Hydrogen the fuel for 21st century. Int J Hydrogen Energy. 2009;34(17):368.CrossRef
[4]
Zurück zum Zitat Abbasi T, Abbasi SA. ‘Renewable’ hydrogen: prospects and challenges. Renew Sustain Energy Rev. 2011;15(6):3034.CrossRef Abbasi T, Abbasi SA. ‘Renewable’ hydrogen: prospects and challenges. Renew Sustain Energy Rev. 2011;15(6):3034.CrossRef
[5]
Zurück zum Zitat Nagai N, Takeuchi M, Kimura T, Oka T. Existence of optimum space between electrodes on hydrogen production by water electrolysis. Int J Hydrogen Energy. 2003;28(1):35.CrossRef Nagai N, Takeuchi M, Kimura T, Oka T. Existence of optimum space between electrodes on hydrogen production by water electrolysis. Int J Hydrogen Energy. 2003;28(1):35.CrossRef
[6]
Zurück zum Zitat LeRoy RL, Janjua MBI, Renaud R, Leuenberger U. Analysis of time-variation effects in water electrolyzers. J Electrochem Soc. 1979;126(10):1674.CrossRef LeRoy RL, Janjua MBI, Renaud R, Leuenberger U. Analysis of time-variation effects in water electrolyzers. J Electrochem Soc. 1979;126(10):1674.CrossRef
[7]
Zurück zum Zitat Herraiz-Cardona I, Ortega E, Vazquez-Gomez L, Perez-Herranz V. Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction. Int J Hydrogen Energy. 2012;37(3):2147.CrossRef Herraiz-Cardona I, Ortega E, Vazquez-Gomez L, Perez-Herranz V. Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction. Int J Hydrogen Energy. 2012;37(3):2147.CrossRef
[8]
Zurück zum Zitat Sheng W, Bivens AP, Myint M, Zhuang Z, Forest RV, Fang Q, Chen JG, Yan Y. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ Sci. 2014;7(5):1719.CrossRef Sheng W, Bivens AP, Myint M, Zhuang Z, Forest RV, Fang Q, Chen JG, Yan Y. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ Sci. 2014;7(5):1719.CrossRef
[9]
Zurück zum Zitat Huot JY, Trudeau ML, Schulz R. Low hydrogen overpotential nanocrystalline Ni–Mo cathodes for alkaline water electrolysis. J Electrochem Soc. 1991;138(5):1316.CrossRef Huot JY, Trudeau ML, Schulz R. Low hydrogen overpotential nanocrystalline Ni–Mo cathodes for alkaline water electrolysis. J Electrochem Soc. 1991;138(5):1316.CrossRef
[10]
Zurück zum Zitat Fan C, Piron DL, Paradis P. Hydrogen evolution on electrodeposited nickel-cobalt-molybdenum in alkaline water electrolysis. Electrochim Acta. 1994;39(18):2715.CrossRef Fan C, Piron DL, Paradis P. Hydrogen evolution on electrodeposited nickel-cobalt-molybdenum in alkaline water electrolysis. Electrochim Acta. 1994;39(18):2715.CrossRef
[11]
Zurück zum Zitat Birry L, Lasia A. Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes. J Appl Electrochem. 2004;34(7):735.CrossRef Birry L, Lasia A. Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes. J Appl Electrochem. 2004;34(7):735.CrossRef
[12]
Zurück zum Zitat Hashimoto K, Sasaki T, Meguro S, Asami K. Nanocrystalline electrodeposited Ni–Mo–C cathodes for hydrogen production. Mater Sci Eng, A. 2004;375–377(1):942.CrossRef Hashimoto K, Sasaki T, Meguro S, Asami K. Nanocrystalline electrodeposited Ni–Mo–C cathodes for hydrogen production. Mater Sci Eng, A. 2004;375–377(1):942.CrossRef
[13]
Zurück zum Zitat Marceta Kaninski MP, Nikolic VM, Tasic GS, Rakocevic ZLJ. Electrocatalytic activation of Ni electrode for hydrogen production by electrodeposition of Co and V species. Int J Hydrogen Energy. 2009;34(7):703.CrossRef Marceta Kaninski MP, Nikolic VM, Tasic GS, Rakocevic ZLJ. Electrocatalytic activation of Ni electrode for hydrogen production by electrodeposition of Co and V species. Int J Hydrogen Energy. 2009;34(7):703.CrossRef
[14]
Zurück zum Zitat Martinez S, Metikos-Hukovic M, Valek L. Electrocatalytic properties of electrodeposited Ni–15Mo cathodes for the HER in acid solutions: synergistic electronic effect. J Mol Catal A: Chem. 2006;245(1–2):114.CrossRef Martinez S, Metikos-Hukovic M, Valek L. Electrocatalytic properties of electrodeposited Ni–15Mo cathodes for the HER in acid solutions: synergistic electronic effect. J Mol Catal A: Chem. 2006;245(1–2):114.CrossRef
[15]
Zurück zum Zitat Subramanya B, Ullal Y, Shenoy SU, Bhat DK, Hegde AC. Novel Co–Ni–graphene composite electrodes for hydrogen production. RSC Adv. 2015;5(59):47398.CrossRef Subramanya B, Ullal Y, Shenoy SU, Bhat DK, Hegde AC. Novel Co–Ni–graphene composite electrodes for hydrogen production. RSC Adv. 2015;5(59):47398.CrossRef
[16]
Zurück zum Zitat Ballard R. Book reviews-practical surface analysis: auger and X-ray photoelectron spectroscopy, Vol 1. 2nd ed. Endeavour; 1991. 15(2):97. Ballard R. Book reviews-practical surface analysis: auger and X-ray photoelectron spectroscopy, Vol 1. 2nd ed. Endeavour; 1991. 15(2):97.
[17]
Zurück zum Zitat Rice JR, Wang JS. Embrittlement of interfaces by solute segregation. Mater Sci Eng, A. 1989;107(89):23.CrossRef Rice JR, Wang JS. Embrittlement of interfaces by solute segregation. Mater Sci Eng, A. 1989;107(89):23.CrossRef
[18]
Zurück zum Zitat Huh SH, Kim HK, Park JW, Lee GH. Surface segregation and surface composition in binary Fe–Mo nanoclusters. J Korean Phys Soc. 2001;38(6):791. Huh SH, Kim HK, Park JW, Lee GH. Surface segregation and surface composition in binary Fe–Mo nanoclusters. J Korean Phys Soc. 2001;38(6):791.
[19]
Zurück zum Zitat Ruban AV, Skriver HL, Nørskov JK. Surface segregation energies in transition-metal alloys. Phys Rev B Condens Matter Mater Phys. 1999;59(24):15990.CrossRef Ruban AV, Skriver HL, Nørskov JK. Surface segregation energies in transition-metal alloys. Phys Rev B Condens Matter Mater Phys. 1999;59(24):15990.CrossRef
[20]
Zurück zum Zitat Lubliner J. Plasticity Theory. New York: Dover Publications; 2008. 2. Lubliner J. Plasticity Theory. New York: Dover Publications; 2008. 2.
[21]
Zurück zum Zitat Fuentes-Pacheco L, Campos M. Bonding evolution with sintering temperature in low alloyed steels with chromium. Sci Sinter. 2009;41(2):161.CrossRef Fuentes-Pacheco L, Campos M. Bonding evolution with sintering temperature in low alloyed steels with chromium. Sci Sinter. 2009;41(2):161.CrossRef
[22]
Zurück zum Zitat Lenel FV. Powder Metallurgy: Principles and Applications. Princeton: Metal Powder Industry; 1980. 12. Lenel FV. Powder Metallurgy: Principles and Applications. Princeton: Metal Powder Industry; 1980. 12.
Metadaten
Titel
Optimization of electrocatalytic properties of NiMoCo foam electrode for water electrolysis by post-treatment processing
verfasst von
Jian-Wei Wang
Yue-Fa Wang
Jing-Guo Zhang
Yan-Lin Yu
Ge-Ge Zhou
Lei Cheng
Lin-Shan Wang
Z. Zak Fang
Publikationsdatum
01.11.2015
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 11/2015
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-015-0592-4

Weitere Artikel der Ausgabe 11/2015

Rare Metals 11/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.