Skip to main content
Erschienen in: Rare Metals 2/2018

18.09.2017

Research progress in electron transport layer in perovskite solar cells

verfasst von: Gong-Ping Mao, Wei Wang, Sen Shao, Xiao-Jun Sun, Shi-An Chen, Min-Hao Li, Hua-Ming Li

Erschienen in: Rare Metals | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since perovskite solar cells appeared in 2009, its simple preparation process, high photoelectric conversion efficiency and the characteristic of low cost in preparation process let it become the hot spot of both at-home and abroad. Owing to the constant efforts of scientists, the conversion efficiency of perovskite solar cells is more than 20% now. Perovskite solar cells are mainly composed of conductive glass, electron transport layer and hole transport layer, perovskite layer and electrode parts. This paper will briefly introduce the working principle and working process about the electron transport layer of perovskite solar cells. The paper focuses on aspects such as material types (e.g., inorganic electron transport materials, organic small molecule electron transport materials, surface modified electron transport materials and doped electron transport materials), preparation technology of electron transport layer, the effects of electron transport layer on the photovoltaic performance of the devices, and the electron transport layer in the future research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Calió L, Momblona C, Gil-Escrig L, Kazim S, Sessolo M, Sastre-Santos Á, Bolink HJ, Ahmad S. Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material. Sol Energy Mater Sol Cells. 2017;163:237.CrossRef Calió L, Momblona C, Gil-Escrig L, Kazim S, Sessolo M, Sastre-Santos Á, Bolink HJ, Ahmad S. Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material. Sol Energy Mater Sol Cells. 2017;163:237.CrossRef
[2]
Zurück zum Zitat Yang L, Yan Y, Cai F, Li J, Wang T. Poly(9-vinylcarbazole) as a hole transport material for efficient and stable inverted planar heterojunction perovskite solar cells. Sol Energy Mater Sol Cells. 2017;163:210.CrossRef Yang L, Yan Y, Cai F, Li J, Wang T. Poly(9-vinylcarbazole) as a hole transport material for efficient and stable inverted planar heterojunction perovskite solar cells. Sol Energy Mater Sol Cells. 2017;163:210.CrossRef
[3]
Zurück zum Zitat Liu P, Xu B, Hua Y, Cheng M, Aitola K, Sveinbjörnsson K, Zhang J, Boschloo G, Sun L, Kloo L. Design, synthesis and application of a π-conjugated, non-spiro molecular alternative as hole-transport material for highly efficient dye-sensitized solar cells and perovskite solar cells. J Power Sources. 2017;344:11.CrossRef Liu P, Xu B, Hua Y, Cheng M, Aitola K, Sveinbjörnsson K, Zhang J, Boschloo G, Sun L, Kloo L. Design, synthesis and application of a π-conjugated, non-spiro molecular alternative as hole-transport material for highly efficient dye-sensitized solar cells and perovskite solar cells. J Power Sources. 2017;344:11.CrossRef
[4]
Zurück zum Zitat Sheikh AD, Bera A, Haque MA, Rakhi RB, Gobbo SD, Alshareef HN, Wu T. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells. Sol Energy Mater Sol Cells. 2015;137:6.CrossRef Sheikh AD, Bera A, Haque MA, Rakhi RB, Gobbo SD, Alshareef HN, Wu T. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells. Sol Energy Mater Sol Cells. 2015;137:6.CrossRef
[5]
Zurück zum Zitat Qin T, Huang W, Kim JE, Vak D, Forsyth C, McNeill CR, Cheng YB. Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy. 2017;31:210.CrossRef Qin T, Huang W, Kim JE, Vak D, Forsyth C, McNeill CR, Cheng YB. Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy. 2017;31:210.CrossRef
[6]
Zurück zum Zitat Hu Z, Miao J, Liu M, Yang T, Liang Y, Goto O, Meng H. Enhanced performance of inverted perovskite solar cells using solution-processed carboxylic potassium salt as cathode buffer layer. Org Electron. 2017;45:97.CrossRef Hu Z, Miao J, Liu M, Yang T, Liang Y, Goto O, Meng H. Enhanced performance of inverted perovskite solar cells using solution-processed carboxylic potassium salt as cathode buffer layer. Org Electron. 2017;45:97.CrossRef
[7]
Zurück zum Zitat Huang L, Li C, Sun X, Xu R, Du Y, Ni J, Cai H, Li J, Hu Z, Zhang J. Efficient and hysteresis-less pseudo-planar heterojunction perovskite solar cells fabricated by a facile and solution-saving one-step dip-coating method. Org Electron. 2017;40:13.CrossRef Huang L, Li C, Sun X, Xu R, Du Y, Ni J, Cai H, Li J, Hu Z, Zhang J. Efficient and hysteresis-less pseudo-planar heterojunction perovskite solar cells fabricated by a facile and solution-saving one-step dip-coating method. Org Electron. 2017;40:13.CrossRef
[8]
Zurück zum Zitat Prathapani S, More V, Bohm S, Bhargava P, Yella A, Mallick S. TiO2 colloid-based compact layers for hybrid lead halide perovskite solar cells. Applied Materials Today. 2017;7:112.CrossRef Prathapani S, More V, Bohm S, Bhargava P, Yella A, Mallick S. TiO2 colloid-based compact layers for hybrid lead halide perovskite solar cells. Applied Materials Today. 2017;7:112.CrossRef
[9]
Zurück zum Zitat Wang L, Li GR, Zhao Q, Gao XP. Non-precious transition metals as counter electrode of perovskite solar cells. Energy Storage Mater. 2017;7:40.CrossRef Wang L, Li GR, Zhao Q, Gao XP. Non-precious transition metals as counter electrode of perovskite solar cells. Energy Storage Mater. 2017;7:40.CrossRef
[10]
Zurück zum Zitat Dang TV, Pammi SVN, Choi J, Yoon SG. Utilization of AZO/Au/AZO multilayer electrodes instead of FTO for perovskite solar cells. Sol Energy Mater Sol Cells. 2017;163:58.CrossRef Dang TV, Pammi SVN, Choi J, Yoon SG. Utilization of AZO/Au/AZO multilayer electrodes instead of FTO for perovskite solar cells. Sol Energy Mater Sol Cells. 2017;163:58.CrossRef
[11]
Zurück zum Zitat Zhou Y, Huang F, Cheng YB, Gray-Weale A. Numerical analysis of a hysteresis model in perovskite solar cells. Comput Mater Sci. 2017;126:22.CrossRef Zhou Y, Huang F, Cheng YB, Gray-Weale A. Numerical analysis of a hysteresis model in perovskite solar cells. Comput Mater Sci. 2017;126:22.CrossRef
[12]
Zurück zum Zitat Kim S, Chung T, Bae S, Lee SW, Lee KD, Kim H, Lee S, Kang Y, Lee HS, Kim D. Improved performance and thermal stability of perovskite solar cells prepared via a modified sequential deposition process. Org Electron. 2017;41:266.CrossRef Kim S, Chung T, Bae S, Lee SW, Lee KD, Kim H, Lee S, Kang Y, Lee HS, Kim D. Improved performance and thermal stability of perovskite solar cells prepared via a modified sequential deposition process. Org Electron. 2017;41:266.CrossRef
[13]
Zurück zum Zitat Song J, Li SP, Zhao YL, Yuan J, Zhu Y, Fang Y, Zhu L, Gu XQ, Qiang YH. Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements. J Alloy Compd. 2017;694:1232.CrossRef Song J, Li SP, Zhao YL, Yuan J, Zhu Y, Fang Y, Zhu L, Gu XQ, Qiang YH. Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements. J Alloy Compd. 2017;694:1232.CrossRef
[14]
Zurück zum Zitat Li W, Jiang Q, Yang J, Luo Y, Li X, Hou Y, Zhou S. Improvement of photovoltaic performance of perovskite solar cells with a ZnO/Zn2SnO4 composite compact layer. Sol Energy Mater Sol Cells. 2017;159:143.CrossRef Li W, Jiang Q, Yang J, Luo Y, Li X, Hou Y, Zhou S. Improvement of photovoltaic performance of perovskite solar cells with a ZnO/Zn2SnO4 composite compact layer. Sol Energy Mater Sol Cells. 2017;159:143.CrossRef
[15]
Zurück zum Zitat Ye T, Xing J, Petrović M, Chen S, Chellappan V, Subramanian GS, Sum TC, Liu B, Xiong Q, Ramakrishna S. Temperature effect of the compact TiO2 layer in planar perovskite solar cells: an interfacial electrical, optical and carrier mobility study. Sol Energy Mater Sol Cells. 2017;163:242.CrossRef Ye T, Xing J, Petrović M, Chen S, Chellappan V, Subramanian GS, Sum TC, Liu B, Xiong Q, Ramakrishna S. Temperature effect of the compact TiO2 layer in planar perovskite solar cells: an interfacial electrical, optical and carrier mobility study. Sol Energy Mater Sol Cells. 2017;163:242.CrossRef
[16]
Zurück zum Zitat Song J, Yang Y, Zhao YL, Che M, Zhu L, Gu XQ, Qiang YH. Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell. Mater Sci Eng B. 2017;217:18.CrossRef Song J, Yang Y, Zhao YL, Che M, Zhu L, Gu XQ, Qiang YH. Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell. Mater Sci Eng B. 2017;217:18.CrossRef
[17]
Zurück zum Zitat Apostolopoulou A, Sygkridou D, Rapsomanikis A, Kalarakis AN, Stathatos E. Enhanced performance of mesostructured perovskite solar cells in ambient conditions with a composite TiO2–In2O3 electron transport layer. Sol Energy Mater Sol Cells. 2017;166:100.CrossRef Apostolopoulou A, Sygkridou D, Rapsomanikis A, Kalarakis AN, Stathatos E. Enhanced performance of mesostructured perovskite solar cells in ambient conditions with a composite TiO2–In2O3 electron transport layer. Sol Energy Mater Sol Cells. 2017;166:100.CrossRef
[18]
Zurück zum Zitat Huang X, Hu Z, Xu J, Wang P, Wang L, Zhang J, Zhu Y. Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Sol Energy Mater Sol Cells. 2017;164:87.CrossRef Huang X, Hu Z, Xu J, Wang P, Wang L, Zhang J, Zhu Y. Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Sol Energy Mater Sol Cells. 2017;164:87.CrossRef
[19]
Zurück zum Zitat Chen G, Zheng J, Zheng L, Yan X, Lin H, Zhang F. Crack-free CH3NH3PbI3 layer via continuous dripping method for high-performance mesoporous perovskite solar cells. Appl Surf Sci. 2017;392:960.CrossRef Chen G, Zheng J, Zheng L, Yan X, Lin H, Zhang F. Crack-free CH3NH3PbI3 layer via continuous dripping method for high-performance mesoporous perovskite solar cells. Appl Surf Sci. 2017;392:960.CrossRef
[20]
Zurück zum Zitat Luo J, Yang WG, Liao B, Guo HB, Shi WM, Chen YG. Improved photovoltaic performance of dye-sensitized solar cells by carbon-ion implantation of tri-layer titania film electrodes. Rare Met. 2015;34(1):34.CrossRef Luo J, Yang WG, Liao B, Guo HB, Shi WM, Chen YG. Improved photovoltaic performance of dye-sensitized solar cells by carbon-ion implantation of tri-layer titania film electrodes. Rare Met. 2015;34(1):34.CrossRef
[21]
Zurück zum Zitat Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050.CrossRef Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050.CrossRef
[22]
Zurück zum Zitat Im JH, Lee CR, Lee JW, Park SW, Park NG. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 2011;3(10):4088.CrossRef Im JH, Lee CR, Lee JW, Park SW, Park NG. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 2011;3(10):4088.CrossRef
[23]
Zurück zum Zitat Burschka J, Pellet N, Moon SJ, Baker RH, Gao P, Nazeeruddin MK, Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499(7458):316.CrossRef Burschka J, Pellet N, Moon SJ, Baker RH, Gao P, Nazeeruddin MK, Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499(7458):316.CrossRef
[24]
Zurück zum Zitat Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science. 2014;345(6196):542.CrossRef Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science. 2014;345(6196):542.CrossRef
[25]
Zurück zum Zitat Liu S, Cao K, Li H, Song J, Han J, Shen Y, Wang M. Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture. Sol Energy. 2017;144:158.CrossRef Liu S, Cao K, Li H, Song J, Han J, Shen Y, Wang M. Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture. Sol Energy. 2017;144:158.CrossRef
[26]
Zurück zum Zitat Liu D, Li Y, Shi B, Yao X, Fan L, Zhao S, Liang J, Ding Y, Wei C, Zhang D, Zhao Y, Zhang X. Tailoring morphology and thickness of perovskite layer for flexible perovskite solar cells on plastics: the role of CH3NH3I concentration. Sol Energy. 2017;147:222.CrossRef Liu D, Li Y, Shi B, Yao X, Fan L, Zhao S, Liang J, Ding Y, Wei C, Zhang D, Zhao Y, Zhang X. Tailoring morphology and thickness of perovskite layer for flexible perovskite solar cells on plastics: the role of CH3NH3I concentration. Sol Energy. 2017;147:222.CrossRef
[27]
Zurück zum Zitat Hatamvand M, Mirjalili SA, Sharzehee M, Behjat A, Jabbari M, Skrifvars M. Fabrication parameters of low-temperature ZnO-based hole-transport-free perovskite solar cells. Optik-Int J Light Electron Opt. 2017;2:101. Hatamvand M, Mirjalili SA, Sharzehee M, Behjat A, Jabbari M, Skrifvars M. Fabrication parameters of low-temperature ZnO-based hole-transport-free perovskite solar cells. Optik-Int J Light Electron Opt. 2017;2:101.
[28]
Zurück zum Zitat Zeng W, Liu X, Wang H, Cui D, Xia R, Min Y. Mechanism study on enhanced open-circuit voltage of perovskite solar cells with vapor-induced TiO2 as electron-transport layer. Thin Solid Films. 2017;629:11.CrossRef Zeng W, Liu X, Wang H, Cui D, Xia R, Min Y. Mechanism study on enhanced open-circuit voltage of perovskite solar cells with vapor-induced TiO2 as electron-transport layer. Thin Solid Films. 2017;629:11.CrossRef
[29]
Zurück zum Zitat Liu Y, Shin I, Hwang IW, Lee J, Kim S, Lee DY, Lee SH, Jang JW, Jung YK, Jeong JH, Park SH, Kim KH. Effective hot-air annealing for improving the performance of perovskite solar cells. Sol Energy. 2017;146:359.CrossRef Liu Y, Shin I, Hwang IW, Lee J, Kim S, Lee DY, Lee SH, Jang JW, Jung YK, Jeong JH, Park SH, Kim KH. Effective hot-air annealing for improving the performance of perovskite solar cells. Sol Energy. 2017;146:359.CrossRef
[30]
Zurück zum Zitat Chen Z, Yang G, Zheng X, Lei H, Chen C, Ma J, Wang H, Fang G. Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: suppressed hysteresis and flexible photovoltaic application. J Power Sources. 2017;351:123.CrossRef Chen Z, Yang G, Zheng X, Lei H, Chen C, Ma J, Wang H, Fang G. Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: suppressed hysteresis and flexible photovoltaic application. J Power Sources. 2017;351:123.CrossRef
[31]
Zurück zum Zitat Ding XJ, Ni L, Ma SB, Ma YZ, Xiao LX, Chen ZJ. Research progress of electron transport layer in perovskite solar cells. Acta Phys Sin. 2015;64(3):95. Ding XJ, Ni L, Ma SB, Ma YZ, Xiao LX, Chen ZJ. Research progress of electron transport layer in perovskite solar cells. Acta Phys Sin. 2015;64(3):95.
[32]
Zurück zum Zitat Ma YZ, Wang SF, Zheng LL, Lu ZL, Zhang DF, Bian ZQ, Huang CH, Xiao LX. Recent research developments of perovskite solar cells. Chin J Chem. 2014;32(10):957.CrossRef Ma YZ, Wang SF, Zheng LL, Lu ZL, Zhang DF, Bian ZQ, Huang CH, Xiao LX. Recent research developments of perovskite solar cells. Chin J Chem. 2014;32(10):957.CrossRef
[33]
Zurück zum Zitat Ciro J, Betancur R, Mesa S, Jaramillo F. High performance perovskite solar cells fabricated under high relative humidity conditions. Sol Energy Mater Sol Cells. 2017;163:38.CrossRef Ciro J, Betancur R, Mesa S, Jaramillo F. High performance perovskite solar cells fabricated under high relative humidity conditions. Sol Energy Mater Sol Cells. 2017;163:38.CrossRef
[34]
Zurück zum Zitat Wang C. Development and working principle of perovskite solar cells. Heilongjiang Sci Technol Inf. 2016;1:36. Wang C. Development and working principle of perovskite solar cells. Heilongjiang Sci Technol Inf. 2016;1:36.
[35]
Zurück zum Zitat Qian L, Ding LM. The main factors affecting the working mechanism and properties of perovskite solar cells. Chem J Chin Univ. 2015;36(4):595. Qian L, Ding LM. The main factors affecting the working mechanism and properties of perovskite solar cells. Chem J Chin Univ. 2015;36(4):595.
[36]
Zurück zum Zitat Lee K, Cho KH, Ryu J, Yun J, Yu H, Lee J, Na W, Jang J. Low-cost and efficient perovskite solar cells using a surfactant-modified polyaniline:poly(styrenesulfonate) hole transport material. Electrochim Acta. 2017;224:600.CrossRef Lee K, Cho KH, Ryu J, Yun J, Yu H, Lee J, Na W, Jang J. Low-cost and efficient perovskite solar cells using a surfactant-modified polyaniline:poly(styrenesulfonate) hole transport material. Electrochim Acta. 2017;224:600.CrossRef
[37]
Zurück zum Zitat Singh TB, Marjanovi N, Matt GJ, Günes S, Sariciftci NS, Montaigne Ramil A, Andreev A, Sitter H, Schwödiauer R, Bauer S. High-mobility n-channel organic field-effect transistors based on epitaxially grown C60 films. Org Electron. 2005;6(3):105.CrossRef Singh TB, Marjanovi N, Matt GJ, Günes S, Sariciftci NS, Montaigne Ramil A, Andreev A, Sitter H, Schwödiauer R, Bauer S. High-mobility n-channel organic field-effect transistors based on epitaxially grown C60 films. Org Electron. 2005;6(3):105.CrossRef
[38]
Zurück zum Zitat Bera A, Sheikh AD, Haque MA, Bose R, Alarousu E, Mohammed OF, Wu T. Fast crystallization and improved stability of perovskite solar cells with Zn2SnO4 electron transporting layer: interface matters. ACS Appl Mater Interfaces. 2015;7(51):28404.CrossRef Bera A, Sheikh AD, Haque MA, Bose R, Alarousu E, Mohammed OF, Wu T. Fast crystallization and improved stability of perovskite solar cells with Zn2SnO4 electron transporting layer: interface matters. ACS Appl Mater Interfaces. 2015;7(51):28404.CrossRef
[39]
Zurück zum Zitat Rong Y, Ku Z, Mei A, Liu T, Xu M, Ko S, Li X, Han H. Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes. J Phys Chem Lett. 2014;5(12):2160.CrossRef Rong Y, Ku Z, Mei A, Liu T, Xu M, Ko S, Li X, Han H. Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes. J Phys Chem Lett. 2014;5(12):2160.CrossRef
[40]
Zurück zum Zitat Yang G, Wang YL, Xu JJ, Lei HW, Chen C, Shan HQ, Liu XY, Xu ZX, Fang GJ. A facile molecularly engineered copper (II) phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability. Nano Energy. 2017;31:332. Yang G, Wang YL, Xu JJ, Lei HW, Chen C, Shan HQ, Liu XY, Xu ZX, Fang GJ. A facile molecularly engineered copper (II) phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability. Nano Energy. 2017;31:332.
[41]
Zurück zum Zitat Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499(7458):316.CrossRef Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499(7458):316.CrossRef
[42]
Zurück zum Zitat Chen JQ, Yang DH, Jiang JH, Ma AB, Song D, Chao YN, Hu MZ. Research process of electron transport layer materials in composite perovskite solar cells. Mater Rev. 2015;29(05):1.CrossRef Chen JQ, Yang DH, Jiang JH, Ma AB, Song D, Chao YN, Hu MZ. Research process of electron transport layer materials in composite perovskite solar cells. Mater Rev. 2015;29(05):1.CrossRef
[43]
Zurück zum Zitat Abu Laban W, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ Sci. 2013;6(11):3249.CrossRef Abu Laban W, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ Sci. 2013;6(11):3249.CrossRef
[44]
Zurück zum Zitat Yella A, Heiniger LP, Gao P, Nazeeruddin MK, Grätzel M. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett. 2014;14(5):2591.CrossRef Yella A, Heiniger LP, Gao P, Nazeeruddin MK, Grätzel M. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett. 2014;14(5):2591.CrossRef
[45]
Zurück zum Zitat Dai SM, Tian HR, Zhang ML, Xing Z, Wang LY, Wang X, Wang T, Deng LL, Xie SY, Huang RB, Zheng LS. Pristine fullerenes mixed by vacuum-free solution process: efficient electron transport layer for planar perovskite solar cells. J Power Sources. 2017;339:27.CrossRef Dai SM, Tian HR, Zhang ML, Xing Z, Wang LY, Wang X, Wang T, Deng LL, Xie SY, Huang RB, Zheng LS. Pristine fullerenes mixed by vacuum-free solution process: efficient electron transport layer for planar perovskite solar cells. J Power Sources. 2017;339:27.CrossRef
[46]
Zurück zum Zitat Chen P, Jin Z, Wang Y, Wang M, Chen S, Zhang Y, Wang L, Zhang X, Liu Y. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells. Appl Surf Sci. 2017;402:86.CrossRef Chen P, Jin Z, Wang Y, Wang M, Chen S, Zhang Y, Wang L, Zhang X, Liu Y. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells. Appl Surf Sci. 2017;402:86.CrossRef
[47]
Zurück zum Zitat Huang X, Hu Z, Xu J, Wang P, Zhang J, Zhu Y. Low-temperature processed ultrathin TiO2 for efficient planar heterojunction perovskite solar cells. Electrochim Acta. 2017;231:77.CrossRef Huang X, Hu Z, Xu J, Wang P, Zhang J, Zhu Y. Low-temperature processed ultrathin TiO2 for efficient planar heterojunction perovskite solar cells. Electrochim Acta. 2017;231:77.CrossRef
[48]
Zurück zum Zitat Sui LL, Zhai YC, Miao LH. Recovery of titania from high titanium slag by roasting method using concentrated sulfuric acid. Rare Met. 2015;34(12):895.CrossRef Sui LL, Zhai YC, Miao LH. Recovery of titania from high titanium slag by roasting method using concentrated sulfuric acid. Rare Met. 2015;34(12):895.CrossRef
[49]
Zurück zum Zitat Gopi CVVM, Venkata-Haritha M, Prabakar K, Kim HJ. Low-temperature easy-processed carbon nanotube contact for high-performance metal- and hole-transporting layer-free perovskite solar cells. J Photochem Photobiol A. 2017;332:265.CrossRef Gopi CVVM, Venkata-Haritha M, Prabakar K, Kim HJ. Low-temperature easy-processed carbon nanotube contact for high-performance metal- and hole-transporting layer-free perovskite solar cells. J Photochem Photobiol A. 2017;332:265.CrossRef
[50]
Zurück zum Zitat Ohno T, Lee SY, Yang Y. Fabrication of morphology-controlled TiO2 photocatalyst nanoparticles and improvement of photocatalytic activities by modification of Fe compounds. Rare Met. 2015;34(5):291.CrossRef Ohno T, Lee SY, Yang Y. Fabrication of morphology-controlled TiO2 photocatalyst nanoparticles and improvement of photocatalytic activities by modification of Fe compounds. Rare Met. 2015;34(5):291.CrossRef
[51]
Zurück zum Zitat Wang M, Du ZF, Lin YF, Zhao DL. Performance of dye-sensitized solar cell with ag nanowire heterojunction coated by TiO2 of different crystalline degrees. Rare Met. 2015;40(4):328. Wang M, Du ZF, Lin YF, Zhao DL. Performance of dye-sensitized solar cell with ag nanowire heterojunction coated by TiO2 of different crystalline degrees. Rare Met. 2015;40(4):328.
[52]
Zurück zum Zitat Yu J, Zhang C, Yang S, Chen M, Lei F, Man B. Nano metal-enhanced power conversion efficiency in CH3NH3PbI3 solar cells. J Phys Chem Solids. 2017;103:323.CrossRef Yu J, Zhang C, Yang S, Chen M, Lei F, Man B. Nano metal-enhanced power conversion efficiency in CH3NH3PbI3 solar cells. J Phys Chem Solids. 2017;103:323.CrossRef
[53]
Zurück zum Zitat Burschka J, Brault V, Ahmad S, Breau L, Nazeeruddin MK, Marsan B, Zakeeruddin SM, Grätzel M. Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energy Environ Sci. 2012;5(3):6089.CrossRef Burschka J, Brault V, Ahmad S, Breau L, Nazeeruddin MK, Marsan B, Zakeeruddin SM, Grätzel M. Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energy Environ Sci. 2012;5(3):6089.CrossRef
[54]
Zurück zum Zitat Liang C, Wu Z, Li P, Fan J, Zhang Y, Shao G. Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells. Appl Surf Sci. 2017;391:337.CrossRef Liang C, Wu Z, Li P, Fan J, Zhang Y, Shao G. Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells. Appl Surf Sci. 2017;391:337.CrossRef
[55]
Zurück zum Zitat Wang P, Zhang J, Chen R, Zeng Z, Huang X, Wang L, Xu J, Hu Z, Zhu Y. Planar heterojunction perovskite solar cells with TiO2 scaffold in perovskite film. Electrochim Acta. 2017;227:180.CrossRef Wang P, Zhang J, Chen R, Zeng Z, Huang X, Wang L, Xu J, Hu Z, Zhu Y. Planar heterojunction perovskite solar cells with TiO2 scaffold in perovskite film. Electrochim Acta. 2017;227:180.CrossRef
[56]
Zurück zum Zitat Xiao G, Shi C, Zhang Z, Li N, Li L. Short-length and high-density TiO2 nanorod arrays for the efficient charge separation interface in perovskite solar cells. J Solid State Chem. 2017;249:169.CrossRef Xiao G, Shi C, Zhang Z, Li N, Li L. Short-length and high-density TiO2 nanorod arrays for the efficient charge separation interface in perovskite solar cells. J Solid State Chem. 2017;249:169.CrossRef
[57]
Zurück zum Zitat Li S, Zhang P, Chen H, Wang Y, Liu D, Wu J, Sarvari H, Chen ZD. Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. J Power Sources. 2017;342:990.CrossRef Li S, Zhang P, Chen H, Wang Y, Liu D, Wu J, Sarvari H, Chen ZD. Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. J Power Sources. 2017;342:990.CrossRef
[58]
Zurück zum Zitat Crossland EJ, Noel N, Sivaram V, Leijtens T, Alexander-Webber JA, Snaith HJ. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature. 2013;495(7440):215.CrossRef Crossland EJ, Noel N, Sivaram V, Leijtens T, Alexander-Webber JA, Snaith HJ. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature. 2013;495(7440):215.CrossRef
[59]
Zurück zum Zitat Conings B, Baeten L, Jacobs T, Dera R, D’Haen J, Manca J, Boyen HG. An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells. APL Mater. 2014;2(8):641.CrossRef Conings B, Baeten L, Jacobs T, Dera R, D’Haen J, Manca J, Boyen HG. An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells. APL Mater. 2014;2(8):641.CrossRef
[60]
Zurück zum Zitat Yu ZH, Qi F, Liu P, You S, Kondamareddy KK, Wang C, Cheng N, Bai S, Liu W, Guo S, Zhao XZ. A composite nanostructured electron-transport layer for stable hole-conductor free perovskite solar cells: design and characterization. Nanoscale. 2016;8(11):5847.CrossRef Yu ZH, Qi F, Liu P, You S, Kondamareddy KK, Wang C, Cheng N, Bai S, Liu W, Guo S, Zhao XZ. A composite nanostructured electron-transport layer for stable hole-conductor free perovskite solar cells: design and characterization. Nanoscale. 2016;8(11):5847.CrossRef
[61]
Zurück zum Zitat Li F, Bao CX, Gao H, Zhu WD, Yu T, Yang J, Fu G, Zhou XX, Zou ZG. A facile spray-assisted fabrication of homogenous flat CH3NH3PbI3 films for high performance mesostructured perovskite solar cells. Mater Lett. 2015;157:38.CrossRef Li F, Bao CX, Gao H, Zhu WD, Yu T, Yang J, Fu G, Zhou XX, Zou ZG. A facile spray-assisted fabrication of homogenous flat CH3NH3PbI3 films for high performance mesostructured perovskite solar cells. Mater Lett. 2015;157:38.CrossRef
[62]
Zurück zum Zitat Bi Z, Liang Z, Xu X, Chai Z, Jin H, Xu D, Li J, Li M, Xu G. Fast preparation of uniform large grain size perovskite thin film in air condition via spray deposition method for high efficient planar solar cells. Sol Energy Mater Sol Cells. 2017;162:13.CrossRef Bi Z, Liang Z, Xu X, Chai Z, Jin H, Xu D, Li J, Li M, Xu G. Fast preparation of uniform large grain size perovskite thin film in air condition via spray deposition method for high efficient planar solar cells. Sol Energy Mater Sol Cells. 2017;162:13.CrossRef
[63]
Zurück zum Zitat Lin L, Jiang L, Qiu Y, Yu Y. Modeling and analysis of HTM-free perovskite solar cells based on ZnO electron transport layer. Superlattices Microstruct. 2017;104:167.CrossRef Lin L, Jiang L, Qiu Y, Yu Y. Modeling and analysis of HTM-free perovskite solar cells based on ZnO electron transport layer. Superlattices Microstruct. 2017;104:167.CrossRef
[64]
Zurück zum Zitat Ruankham P, Wongratanaphisan D, Gardchareon A, Phadungdhitidhada S, Choopun S, Sagawa T. Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells. Appl Surf Sci. 2017;410:393.CrossRef Ruankham P, Wongratanaphisan D, Gardchareon A, Phadungdhitidhada S, Choopun S, Sagawa T. Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells. Appl Surf Sci. 2017;410:393.CrossRef
[65]
Zurück zum Zitat Kumar MH, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix PP, Mathews N. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun (Camb). 2013;49(94):11089.CrossRef Kumar MH, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix PP, Mathews N. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun (Camb). 2013;49(94):11089.CrossRef
[66]
Zurück zum Zitat Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics. 2014;8(2):133.CrossRef Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics. 2014;8(2):133.CrossRef
[67]
Zurück zum Zitat Ameen S, Akhtar MS, Seo HK, Nazeeruddin MK, Shin HS. An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: optoelectronic transient and charge trapping studies. J Phys Chem C. 2015;119(19):10379.CrossRef Ameen S, Akhtar MS, Seo HK, Nazeeruddin MK, Shin HS. An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: optoelectronic transient and charge trapping studies. J Phys Chem C. 2015;119(19):10379.CrossRef
[68]
Zurück zum Zitat Zheng HD, Tachibana Y. Dye-sensitized solar cells based on WO3. Langmuir. 2010;26(24):19148.CrossRef Zheng HD, Tachibana Y. Dye-sensitized solar cells based on WO3. Langmuir. 2010;26(24):19148.CrossRef
[69]
Zurück zum Zitat Gheno A, Thu Pham TT, Di Bin C, Bouclé J, Ratier B, Vedraine S. Printable WO3 electron transporting layer for perovskite solar cells: influence on device performance and stability. Sol Energy Mater Sol Cells. 2017;161:347.CrossRef Gheno A, Thu Pham TT, Di Bin C, Bouclé J, Ratier B, Vedraine S. Printable WO3 electron transporting layer for perovskite solar cells: influence on device performance and stability. Sol Energy Mater Sol Cells. 2017;161:347.CrossRef
[70]
Zurück zum Zitat Dong QS, Shi YT, Wang K, Li Y, Wang SF, Zhang H, Xing YJ, Du Y, Bai XG, Ma TL. Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J Phys Chem C. 2015;119(19):10212.CrossRef Dong QS, Shi YT, Wang K, Li Y, Wang SF, Zhang H, Xing YJ, Du Y, Bai XG, Ma TL. Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J Phys Chem C. 2015;119(19):10212.CrossRef
[71]
Zurück zum Zitat Park JI, Heo JH, Park SH, Hong KI, Jeong HG, Im SH, Kim HK. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells. J Power Sources. 2017;341:340.CrossRef Park JI, Heo JH, Park SH, Hong KI, Jeong HG, Im SH, Kim HK. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells. J Power Sources. 2017;341:340.CrossRef
[72]
Zurück zum Zitat Zhu ZL, Zheng XL, Bai Y, Zhang T, Wang ZL, Xiao S, Yang SH. Mesoporous SnO2 single crystals as an effective electron collector for perovskite solar cells. Phys Chem Chem Phys. 2015;17(28):18265.CrossRef Zhu ZL, Zheng XL, Bai Y, Zhang T, Wang ZL, Xiao S, Yang SH. Mesoporous SnO2 single crystals as an effective electron collector for perovskite solar cells. Phys Chem Chem Phys. 2015;17(28):18265.CrossRef
[73]
Zurück zum Zitat Chen JY, Chueh CC, Zhu Z, Chen WC, Jen AKY. Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells. Sol Energy Mater Sol Cells. 2017;164:47.CrossRef Chen JY, Chueh CC, Zhu Z, Chen WC, Jen AKY. Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells. Sol Energy Mater Sol Cells. 2017;164:47.CrossRef
[74]
Zurück zum Zitat Song JX, Zheng EQ, Bian J, Wang XF, Tian WJ. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J Mater Chem A. 2015;3(20):10837.CrossRef Song JX, Zheng EQ, Bian J, Wang XF, Tian WJ. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J Mater Chem A. 2015;3(20):10837.CrossRef
[75]
Zurück zum Zitat Wu CG, Chiang CH, Tseng ZL. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via (2/1)-step spin-coating process. J Mater Chem A. 2014;2(38):15897.CrossRef Wu CG, Chiang CH, Tseng ZL. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via (2/1)-step spin-coating process. J Mater Chem A. 2014;2(38):15897.CrossRef
[76]
Zurück zum Zitat Jeng J, Chiang Y, Lee M, Peng S, Guo T. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv Mater. 2013;25(27):3727.CrossRef Jeng J, Chiang Y, Lee M, Peng S, Guo T. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv Mater. 2013;25(27):3727.CrossRef
[77]
Zurück zum Zitat Li XD, Wang XY, Zhang WJ, Wu YL, Gao F, Fang JF. The effect of external electric field on the performance of perovskite solar cells. Org Electron. 2015;18:107.CrossRef Li XD, Wang XY, Zhang WJ, Wu YL, Gao F, Fang JF. The effect of external electric field on the performance of perovskite solar cells. Org Electron. 2015;18:107.CrossRef
[78]
Zurück zum Zitat Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun. 2013;4(7):657. Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun. 2013;4(7):657.
[79]
Zurück zum Zitat You J, Hong Z, Yang Y, Chen C, Chang W, Yoshimura K, Ohya K. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv Mater. 2014;26(32):5670.CrossRef You J, Hong Z, Yang Y, Chen C, Chang W, Yoshimura K, Ohya K. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv Mater. 2014;26(32):5670.CrossRef
[80]
Zurück zum Zitat Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL, Mohite AD. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015;347(6221):522.CrossRef Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL, Mohite AD. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015;347(6221):522.CrossRef
[81]
Zurück zum Zitat Chiang CH, Wu CG. Bulk heterojunction perovskite-PCBM solar cells with high fill factor. Nat Photonics. 2016;10:196.CrossRef Chiang CH, Wu CG. Bulk heterojunction perovskite-PCBM solar cells with high fill factor. Nat Photonics. 2016;10:196.CrossRef
[82]
Zurück zum Zitat Chandiran AK, Yella A, Mayer MT, Gao P, Nazeeruddin MK, Grätzel M. Sub-nanometer conformal TiO2 blocking layer for high efficiency solid-state perovskite absorber solar cells. Adv Mater. 2014;26(25):4309.CrossRef Chandiran AK, Yella A, Mayer MT, Gao P, Nazeeruddin MK, Grätzel M. Sub-nanometer conformal TiO2 blocking layer for high efficiency solid-state perovskite absorber solar cells. Adv Mater. 2014;26(25):4309.CrossRef
[83]
Zurück zum Zitat Li Y. Research of mesoporous perovskite solar cells and new oxide solar cells. Hefei: University of Science and Technology of China; 2015. 44. Li Y. Research of mesoporous perovskite solar cells and new oxide solar cells. Hefei: University of Science and Technology of China; 2015. 44.
[84]
Zurück zum Zitat Seo J, Park S, Chan Kim Y, Joong Jeon N, Hong Noh J, Cheol Yoon S, Seok SI. Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy Environ Sci. 2014;7(7):2642.CrossRef Seo J, Park S, Chan Kim Y, Joong Jeon N, Hong Noh J, Cheol Yoon S, Seok SI. Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy Environ Sci. 2014;7(7):2642.CrossRef
[85]
Zurück zum Zitat Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith HJ. Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency. Science. 2013;7:1142. Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith HJ. Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency. Science. 2013;7:1142.
[86]
Zurück zum Zitat Nagaoka H, Ma F, de Quilettes DW, Vorpahl SM, Glaz MS, Colbert AE, Ziffer ME, Ginger DS. Zr incorporation into TiO2 electrodes reduces hysteresis and improves performance in hybrid perovskite solar cells while increasing carrier lifetimes. J Phys Chem Lett. 2015;6(4):669.CrossRef Nagaoka H, Ma F, de Quilettes DW, Vorpahl SM, Glaz MS, Colbert AE, Ziffer ME, Ginger DS. Zr incorporation into TiO2 electrodes reduces hysteresis and improves performance in hybrid perovskite solar cells while increasing carrier lifetimes. J Phys Chem Lett. 2015;6(4):669.CrossRef
[87]
Zurück zum Zitat Wang P, Zhao J, Liu J, Wei L, Liu Z, Guan L, Cao G. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods. J Power Sources. 2017;339:51.CrossRef Wang P, Zhao J, Liu J, Wei L, Liu Z, Guan L, Cao G. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods. J Power Sources. 2017;339:51.CrossRef
[88]
Zurück zum Zitat Zhang W, Xiong J, Wang S, Liu WE, Li J, Wang D, Gu H, Wang X, Li J. Highly conductive and transparent silver grid/metal oxide hybrid electrodes for low-temperature planar perovskite solar cells. J Power Sources. 2017;337:118.CrossRef Zhang W, Xiong J, Wang S, Liu WE, Li J, Wang D, Gu H, Wang X, Li J. Highly conductive and transparent silver grid/metal oxide hybrid electrodes for low-temperature planar perovskite solar cells. J Power Sources. 2017;337:118.CrossRef
[89]
Zurück zum Zitat Yan PR, Huang WJ, Yang SH. Incorporation of quaternary ammonium salts containing different counterions to improve the performance of inverted perovskite solar cells. Chem Phys Lett. 2017;669:143.CrossRef Yan PR, Huang WJ, Yang SH. Incorporation of quaternary ammonium salts containing different counterions to improve the performance of inverted perovskite solar cells. Chem Phys Lett. 2017;669:143.CrossRef
[90]
Zurück zum Zitat Mahmood K, Swain BS, Jung HS. Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. Nanoscale. 2014;6(15):9127.CrossRef Mahmood K, Swain BS, Jung HS. Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. Nanoscale. 2014;6(15):9127.CrossRef
[91]
Zurück zum Zitat Shirazi M, Sabet Dariani R, Toroghinejad MR. Efficiency enhancement of hole-conductor-free perovskite solar cell based on ZnO nanostructure by Al doping in ZnO. J Alloy Compd. 2017;692:492.CrossRef Shirazi M, Sabet Dariani R, Toroghinejad MR. Efficiency enhancement of hole-conductor-free perovskite solar cell based on ZnO nanostructure by Al doping in ZnO. J Alloy Compd. 2017;692:492.CrossRef
[92]
Zurück zum Zitat Lai WC, Lin KW, Guo TF, Chen P, Wang YT. Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the C60 interlayer. Appl Phys Lett. 2015;107(25):253301.CrossRef Lai WC, Lin KW, Guo TF, Chen P, Wang YT. Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the C60 interlayer. Appl Phys Lett. 2015;107(25):253301.CrossRef
[93]
Zurück zum Zitat Wang Q, Shao YC, Dong QF, Xiao ZG, Yuan YB, Huang JS. Efficient, high yield perovskite photovoltaic devices grown by inter diffusion of solution-processed precursor stacking layers. Energy Environ Sci. 2014;7(8):2619.CrossRef Wang Q, Shao YC, Dong QF, Xiao ZG, Yuan YB, Huang JS. Efficient, high yield perovskite photovoltaic devices grown by inter diffusion of solution-processed precursor stacking layers. Energy Environ Sci. 2014;7(8):2619.CrossRef
[94]
Zurück zum Zitat Chueh CC, Liao CY, Zuo F, Spencer T, Williams Liang PW, Jen AKY. The roles of alkyl halide additives in enhancing perovskite solar cell performance. J Materi Chem A. 2014;16(17):9058. Chueh CC, Liao CY, Zuo F, Spencer T, Williams Liang PW, Jen AKY. The roles of alkyl halide additives in enhancing perovskite solar cell performance. J Materi Chem A. 2014;16(17):9058.
[95]
Zurück zum Zitat Im JH, Lee CR, Lee JW, Park SW. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 2011;3(10):4088.CrossRef Im JH, Lee CR, Lee JW, Park SW. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 2011;3(10):4088.CrossRef
[96]
Zurück zum Zitat Qin P, Domanski AL, Chandiran AK, Berger G, Butt HJ, Dar MI, Moehl T, Tetreault N, Gao P, Ahmad S, Nazeeruddin MK, Grätzel M. Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells. Nanoscale. 2013;6(3):1508.CrossRef Qin P, Domanski AL, Chandiran AK, Berger G, Butt HJ, Dar MI, Moehl T, Tetreault N, Gao P, Ahmad S, Nazeeruddin MK, Grätzel M. Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells. Nanoscale. 2013;6(3):1508.CrossRef
[97]
Zurück zum Zitat Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012;338(6107):643.CrossRef Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012;338(6107):643.CrossRef
[98]
Zurück zum Zitat Xiao Y, Cheng N, Kondamareddy KK, Wang C, Liu P, Guo S, Zhao XZ. W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes. J Power Sources. 2017;342:489.CrossRef Xiao Y, Cheng N, Kondamareddy KK, Wang C, Liu P, Guo S, Zhao XZ. W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes. J Power Sources. 2017;342:489.CrossRef
[99]
Zurück zum Zitat Wang JTW, Ball JM, Barea EM, Abate A, Alexander Webber JA. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 2014;14(2):724.CrossRef Wang JTW, Ball JM, Barea EM, Abate A, Alexander Webber JA. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 2014;14(2):724.CrossRef
[100]
Zurück zum Zitat Ito S, Tanaka S, Manabe K, Nishino H. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J Phys Chem C. 2014;118(30):16995.CrossRef Ito S, Tanaka S, Manabe K, Nishino H. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J Phys Chem C. 2014;118(30):16995.CrossRef
[101]
Zurück zum Zitat Huang CY, Fu WF, Li CZ, Zhang ZQ, Qiu WM, Shi MM, Heremans P, Jen AKY, Chen HZ. A dopant-free hole-transporting material with a C3h symmetrical truxene core for highly efficient perovskite solar cells. J Am Chem Soc. 2016;138(8):2528.CrossRef Huang CY, Fu WF, Li CZ, Zhang ZQ, Qiu WM, Shi MM, Heremans P, Jen AKY, Chen HZ. A dopant-free hole-transporting material with a C3h symmetrical truxene core for highly efficient perovskite solar cells. J Am Chem Soc. 2016;138(8):2528.CrossRef
[102]
Zurück zum Zitat Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, Bai Y, Fan LZ, Yan H, Phillips DL, Yang SH. Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc. 2014;136(10):3760.CrossRef Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, Bai Y, Fan LZ, Yan H, Phillips DL, Yang SH. Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc. 2014;136(10):3760.CrossRef
Metadaten
Titel
Research progress in electron transport layer in perovskite solar cells
verfasst von
Gong-Ping Mao
Wei Wang
Sen Shao
Xiao-Jun Sun
Shi-An Chen
Min-Hao Li
Hua-Ming Li
Publikationsdatum
18.09.2017
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2018
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-017-0951-4

Weitere Artikel der Ausgabe 2/2018

Rare Metals 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.